
18.06 Final Solution
Hold on Tuesday, 19 May 2009 at 9am in Walker Gym.

Total: 100 points.

Problem 1:
A sequence of numbers f0, f1, f2, . . . is defined by the recurrence

fk+2 = 3fk+1 − fk,

with starting values f0 = 1, f1 = 1. (Thus, the first few terms in the sequence are
1, 1, 2, 5, 13, 34, 89, . . ..)

(a) Defining uk =

(
fk+1

fk

)
, re-express the above recurrence as uk+1 = Auk, and

give the matrix A.

(b) Find the eigenvalues of A, and use these to predict what the ratio fk+1/fk of
successive terms in the sequence will approach for large k.

(c) The sequence above starts with f0 = f1 = 1, and |fk| grows rapidly with k.
Keep f0 = 1, but give a different value of f1 that will make the sequence (with
the same recurrence fk+2 = 3fk+1 − fk) approach zero (fk → 0) for large k.

Solution (18 points = 6+6+6)
(a) We have(

fk+2

fk+1

)
=

(
3 −1
1 0

)(
fk+1

fk

)
⇒ A =

(
3 −1
1 0

)
.

(b) Eigenvalues of A are roots of det(A − λI) = λ2 − 3λ + 1 = 0. They are

λ1 =
3 +
√

5

2
and λ2 =

3−
√

5

2
. Note that λ1 > λ2, so the ratio fk+1/fk will

approach λ1 =
3 +
√

5

2
for large k.

(c) Let v1,v2 be the eigenvectors with eigenvalues λ1 and λ2, respectively. So,
we can write u0 = c1v1 + c2v2 and then uk = c1λ

k
1v1 + c2λ

k
2v2. If we need fk → 0,
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we have to make c1 = 0. In other words, u0 must be proportional to the eigenvector
v2.

A− λ2I =

3 +
√

5

2
−1

1 −3−
√

5

2

 ⇒ v2 =

3−
√

5

2
1

 .

Hence, we need to take f1 =
3−
√

5

2
so that fk will approach zero for large k.
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Problem 2: For the matrix A =

1 0 −1
1 1 1
2 1 0

 with rank 2, consider the system of

equations Ax = b.

(i) Ax = b has a solution whenever b is orthogonal to some nonzero vector c.
Explicitly compute such a vector c. Your answer can be multiplied by any
overall constant, because c is any basis for the space
of A.

(ii) Find the orthogonal projection p of the vector b =

9
9
9

 onto C(A). (Note:

The matrix ATA is singular, so you cannot use your formula P = A(ATA)−1AT

to obtain the projection matrix P onto the column space of A. But I have
repeatedly discouraged you from computing P explicitly, so you don’t need to
be reminded anyway, right?)

(iii) If p is your answer from (ii), then a solution y of Ay = p minimizes what?
[You need not answer (ii) or compute y for this part.]

Solution (18 points = 7+7+4)
(i) The system of equations Ax = b has a solution if and only if b lies in the

column space of A, which is orthogonal to the left nullspace of A. We solve for a
(nonzero) vector c in the left nullspace using Gaussian elimination, as follows.

AT =

 1 1 2
0 1 1
−1 1 0

 ;

1 1 2
0 1 1
0 2 2

 ;

1 0 1
0 1 1
0 0 0

 ⇒ c =

−1
−1
1

 .

The answer can by any nonzero multiple of c, which will be a basis for the left
nullspace of A.

(ii) Method 1: Since c is a basis of the orthogonal complement of the column
space C(A), the projection of b onto C(A) can be computed as

p = b− cTbc

‖c‖2
=

9
9
9

− −9

3

−1
−1
1

 =

 6
6
12

 .
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Method 2: (not recommended) We know that p is the best linear approximation
of b. So we solve

ATA

y1

y2

y3

 = AT

9
9
9

 ,

6 3 0
3 2 1
0 1 2

y1

y2

y3

 =

36
18
0


We can get a particular solution y = (6, 0, 0)T. (There are other solutions too.)
Hence,

p = A

y1

y2

y3

 =

1 0 −1
1 1 1
2 1 0

6
0
0

 =

 6
6
12

 .

(iii) Since p is the orthogonal projection of b onto C(A), A solution y of Ay = p
minimizes the distance ‖Ay − b‖.
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Problem 3: True or false. Give a counter-example if false. (You need not provide
a reason if true.)

(a) If Q is an orthogonal matrix, then detQ = 1.

(b) If A is a Markov matrix, then du/dt = Au approaches some finite constant
vector (a “steady state”) for any initial condition u(0).

(c) If S and T are subspaces of R2, then their intersection (points in both S and
T ) is also a subspace.

(d) If S and T are subspaces of R2, then their union (points in either S or T ) is
also a subspace.

(e) The rank of AB is less than or equal to the ranks of A and B for any A and
B.

(f) The rank of A + B is less than or equal to the ranks of A and B for any A
and B.

Solution (12 points = 2+2+2+2+2+2)
(a) False. For example, Q = (−1) is an orthogonal matrix: QTQ = (−1)(−1) =

(1).
REMARK: In general, for a real orthogonal matrix Q, detQ = ±1. This is

because det(QTQ) = det(I) = 1 ⇒ det(Q)2 = det(QT) det(Q) = 1.

(b) False. Be careful here that we are discussing differential equations but not
the powers of A. For example, A = (1), the differential equation has solution u = cet

for some constant c, which does not approach to any finite constant vector.
REMARK: It is true that for the Markov process uk+1 = Auk, uk approaches

some finite constant vector (a “steady state”) for any initial condition u0.

(c) True. Intersections of subspaces are always subspaces.

(d) False. For example, S and T are the x- and y-axes. Then (1, 1) = (1, 0) +
(0, 1) is a linear combination of points in the union of S and T , but does not lie in
the union itself. So the union of S and T is not a subspace.

(e) Ture. One may see this by arguing as follows. Since the column space of
AB is a subspace of the column space of A, the rank of AB is less than or equal to
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the rank of A. Similarly, since the row space of AB is a subspace of the row space
of B, the rank of AB is less than or equal to the rank of B.

(f) False. A =

(
0 0
0 1

)
, B =

(
1 0
0 0

)
both have rank 1. But A + B =

(
1 0
0 1

)
has rank 2.

REMARK: It is true that rank(A+B) ≤ rankA+ rankB.
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Problem 4: Consider the matrix

A =


1 1 1
1 −1 −1
1 0 −3
1 0 −1


(a) Find an orthonormal basis for C(A) using Gram-Schmidt, forming the columns

of a matrix Q.

(b) Write each step of your Gram-Schmidt process from (a) as a multiplication of
A on the (left or right) by some invertible matrix. Explain how
the product of these invertible matrices relates to the matrix R from the QR
factorization A = QR of A.

(c) Gram-Schmidt on another matrix B (of the same size as A) gives the same
orthonormal basis (the same Q) as in part (a). Which of the four subspaces,
if any, must be the same for the matrices AAT and BBT? [You can do this
part without doing (a) or (b).]

Solution (18 points = 6+6+6)
(a) From u1 = (1, 1, 1, 1)T, we get q1 = u1/‖u1‖ = 1

2
(1, 1, 1, 1)T.

v2 = (1,−1, 0, 0)T,

u2 = v2 − qT
1 v2q1 = v2 = (1,−1, 0, 0)T,

q2 = v2/‖v2‖ =
1√
2

(1,−1, 0, 0)T;

v3 = (1,−1,−3,−1)T,

u3 = v3 − qT
1 v3q1 − qT

1 v3q1 = v3 + u1 − u2 = (1, 1,−2, 0)T,

q3 = v3/‖v3‖ =
1√
6

(1, 1,−2, 0)T.

Hence, we have

Q =


1/2 1/

√
2 1/

√
6

1/2 −1/
√

2 1/
√

6

1/2 0 −2/
√

6
1/2 0 0

 .
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(b) Each step of the Gram Schmidt process from (a) is a multiplication of A on
the right as follows.

A ; A

1/2 0 0
0 1 0
0 0 1

 ; A

1/2 0 0
0 1 0
0 0 1

1 0 0

0 1/
√

2 0
0 0 1


; A

1/2 0 0
0 1 0
0 0 1

1 0 0

0 1/
√

2 0
0 0 1

1 0 1
0 1 −1
0 0 1


; A

1/2 0 0
0 1 0
0 0 1

1 0 0

0 1/
√

2 0
0 0 1

1 0 1
0 1 −1
0 0 1

1 0 0
0 1 0

0 0 1/
√

6

 = Q.

The product of these invertible 3× 3 matrices is exactly R−1.

(c) Since the Gram-Schmidt of A and B gives the same outcome, the column
space of A and B are the same. We know that A and AAT have the same column
space, and B and BBT have the same column space. Hence AAT and BBT have
the same column space. Moreover, since left nullspace is always orthogonal to the
column space, AAT and BBT have the same left nullspace too. Also, notice that
AAT and BBT are symmetric matrices, their row spaces are the same as the column
spaces, and their nullspaces are the same as the left nullspaces. Therefore, all four
subspaces of AAT are the same as BBT.
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Problem 5: The complete solution to Ax = b is

x =

 1
0
−1

+ c

1
1
0

+ d

−2
0
1


for any arbitrary constants c and d.

(i) If A is an m×n matrix with rank r, give as much true information as possible
about the integers m, n, and r.

(ii) Construct an explicit example of a possible matrix A and a possible right-hand
side b with the solution x above. (There are many acceptable answers; you
only have to provide one.)

Solution (16 points = 8+8)
(i) Since we can multiply A with x, n = 3. Also, since the nullspace of A is

2-dimensional, r = n− 2 = 1. There is no restriction on m except that m ≥ r = 1.

(ii) We construct a minimal one, namely, A = (a1 a2 a2) is 1 × 3. For this, we

need A

1
1
0

 = 0 and A

−2
0
1

 = 0. That is

(
1 1 0
−2 0 1

)a1

a2

a3

 =

(
0
0

)
.

A special solution is A = (1 −1 2). In this case, b = Ax = (1 −1 2)

 1
0
−1

 = (−1).

So, an example is (
1 −1 2

)
x = (−1).
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Problem 6: Consider the matrix

A =

 1 −1 −1
−1 1 −1
−1 −1 1


(i) A has one eigenvalue λ = −1, and the other eigenvalue is a double root of

det(A− λI). What is the other eigenvalue? (Very little calculation required.)

(ii) Is A defective? Why or why not?

(iii) Using the above A, suppose we want to solve the equation

du

dt
= Au + cu

where c is some real number, for some initial condition u(0).

(a) For what values of c will the solutions u(t) always to go zero as t→∞?

(b) For what values of c will the solutions u(t) typically diverge (‖u(t)‖ → ∞)
as t→∞?

(c) For what values of c will the solutions u(t) approach a constant vector
(possibly zero) as t→∞?

Solution (18 points = 6+6+6 (2+2+2))
(i) Let λ1 = −1 and let λ2 = λ3 denote the double roots. Then from the trace

of A, we have λ1 + 2λ2 = trace(A) = 3. Hence, λ2 = 2.

(ii) A is not defective. There are two ways to see it. For one way, since A
is symmetric, it is always non-defective; for another way, we compute A − λ2I =−1 −1 −1
−1 −1 −1
−1 −1 −1

, which has rank 1 and hence its nullspace is 2-dimentional.

(iii) The key point here is that A+ cI would have eigenvalues λ1 + c and λ2 + c
(with multiplicity 2). An alternative point of view is as follows. If we write the
initial condition u(t) = c1(t)v1 + c2(t)v2 + c3(t)v3, then the differential equation
becomes

dc1(t)

dt
v1 +

dc2(t)

dt
v2 +

dc3(t)

dt
v3 = c1λ1v1 + c2λ2v2 + c3λ3v3 + cc1v1 + cc2v2 + cc3v3.
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We have 
dc1(t)

dt
= c1λ1 + cc1, ⇒ c1 = e(λ1+c)t;

dc2(t)

dt
= c2λ2 + cc2, ⇒ c2 = e(λ2+c)t;

dc3(t)

dt
= c3λ3 + cc3, ⇒ c3 = e(λ3+c)t;

(a) If we require u(t) always go zero as t→∞, λ1 + c < 0, λ2 + c = λ3 + c < 0.
Hence, we require c < −2.

(b) If the solution u(t) typically diverge, we need either λ1 + c > 0 or λ2 + c =
λ3 + c > 0. Hence, we require c > −2.

(c) If we allow the solution to approach to some constant vector, we allow to
have the extreme case of (a), that is to say c ≤ −2.
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