18.06 Problem Set 9
Due Friday, 9 May 2008 at 4 pm in 2-106.

Problem 1: Do problem 4 in section 6.7 (pg. 360) in the book.

(10 points)

a) We have

T, oaar_ |21
ATA=AA —[1 1]

This matrix has eigenvalues satisfying A> — 3\ + 1 = 0, so it has eigenvalues \; =
% + “/75 and Ay = g — \/75 Its eigenvectors form the nullspace of
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This has nullspace generated by (2,v/5 —1). Since the eigenvectors of A”A must be
perpendicular, we know that another eigenvector is (v/5 — 1, —2) (which we could
also find directly). The normalized eigenvector matrix is
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b) We construct the singular value decomposition A = UXVH. First, we choose
the matrix V to be the eigenvector matrix for A7 A; that is, it is just the S we found
in part a. The matrix ¥ is the 2x2 matrix with the square roots of the eigenvalues
of AT A on the diagonal:
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Finally, we find U via the equation AV = UX. We can’t skip directly to U = S. It is
true that U will be an eigenvector matrix for AAT, but we must pick the eigenvectors
correctly! In this case the only choice in unit eigenvectors of AAT is the sign. Even
so, we must have the relationship A = UXV ¥ and if we get the sign of the vectors
of U backwards this will not be true.



Let v; and u; be the ith columns of V and U. We know u; is either v; or —uvy,
and similarly for us. The question is just which way around it is. We start with vy:
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This is the same vector as v;. Here Av; = oyu; is an eigenvector equation for A,
since o7 is an eigenvalue of A. So v; keeps the same sign.
For vy we find:
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We already know that us is either vy or —wvy. However vy has negative second
component, and uy has negative first component, meaning that the sign has switched.
Here Avy, = o9us is not an eigenvector equation, since oo = —XAy. So we need to
switch the sign of us as well.

In the end, we get the SVD:
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It is almost the diagonalization of A, but not quite. Since one of the eigenvalues of

A is negative, it can’t appear in X. We must switch its sign, and we compensate by
switching the sign of the eigenvector in U. As you might guess from this problem,

2



the SVD for a positive definite matrix is its diagonalization — see the last problem
of this pset.

Problem 2: Do problem 7 in section 6.7 (pg. 360).

(10 points)

Here

11
ATA=11 2
0 1
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Here the eigenvalue equation is (1 — A\)(A* —3A + 1) — (1 — A) = 0. Factoring out
the (1 — X), we get (1 — A)A(A —3) = 0, so the eigenvalues are 3,1,0. Remember,
when we do the SVD we always put 0 eigenvalues last! This is important.

The first eigenvector is the nullspace of

-2 1 0
ATA-3I=1|1 -1 1
0o 1 -2

By inspection we see that this has basis (1,2,1). Similarly, the second eigenvector
is the nullspace of
010
ATA-T=1]1 11
010
By inspection this has basis (1,0, —1). Finally, the last eigenvector is the nullspace
of AT A, and by inspection we see this is (1, —1,1). Putting this all together, we get
a normalized eigenvector matrix

1/V6 1/vV2 1/V3
S=12/v/6 0 —-1/V3
1/V6 -1/v2 1/V3

Now we repeat this for
r 21
AAT = [1 5

This has eigenvalues given by \> — 4\ + 3 = 0, so the eigenvalues are 3 and 1. An
eigenvector for 3 is (1,1)/v/2, and for 1 is (1,—1)/v/2.



Finally, we find the SVD. As before, we set V' = S that we found above. We
find the 2x3 matrix ¥ by taking the square roots of the eigenvalues (either for AT A
or AAT, both will work):
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Finally, we find U using the equations Av; = o;u;. As before, we know that U is
an eigenvector matrix for AA”, but we must choose the correct one. Here the unit
eigenvectors are determined up to sign.

Calculating:
3
Avy = \éé
=
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So we set u; = (1,1)/+/2. Similarly
1
Avy = @
N
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So we get the SVD:
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1/vV6 1/vV2  1/V3
Vo= |2/v6 0 —1/V3
1/vV6 —1/vV2 1/V3

Finally we check by multiplying it all out:
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Note that the last row of V¥ didn’t affect anything. This is typical when we get
eigenvalues of 0; they shouldn’t factor in to the multiplication at all.

Problem 3: Do problem 9 in section 6.7 (pg. 361).

(5 points)

First note that A must have dimensions 3 by 4. If A has rank one, so does AT A.
This means that only one eigenvalue of A7 A is not 0, so 3 has the form

op 00 0
YX=[10 00 0
0 00O

Because we only have one non-zero entry in Y, we also only get one non-trivial
equation Av; = oqju;. Of course this must be the equation given in the problem
Av = 12u. So, the first column of U is u, and the first column of V' is v.

When we multiply out A = UX VT, most of it will cancel because of the 0 entries
in 3. In fact, the only non-zero part will come from the first columns of U and V
(see part a of the next problem). So A = 12uv’. You don’t need to multiply it out,
but if you do you get

4 4 4 4
A=14 4 4 4
2 2 2 2

The only singular value is given by the equation, namely, o1 = 12.

We could also have done this problem by noting that any rank 1 matrix has the
form zy? for some vectors x and y, and using the equation to calculate x and y
explicitly.

Problem 4: a) Do problem 11 in section 6.7 (pg. 361).
b) Do problem 16 in section 6.7 (pg. 361).

(5-+5 points)

a) In brief, the SVD expresses A as a sum of r rank one matrices because of
the block form of multiplication (see page 60). The block form of multiplication is
a general fact, so the only thing to write down is why ¥ has the effect that it does.

So, note that if there are more columns than rows, then multiplication by >
rescales the rows of the matrix V' and cuts off the bottom ones. Similarly, if there
are more rows than columns, multiplication by X rescales the columns of U and cuts



off the last ones. Either way, using the block picture of matrix multiplication, we
find UXVT as a sum of rank one matrices

vt = ulalvlT + ...+ ura,.vrT

b) One might hope that if A were a square matrix, the SVD for A + I would
involve ¥+ I in analogy to the diagonalization equation. However, if we were to use
¥ + I in the SVD, we would get U(X + I)VH = A+ UVH # A+ I. The problem
is that X is the square root of the eigenvalues of AT A. Substituting A + I in gives
(AT+1)(A+1T)=ATA+ AT + A+ I, and the eigenvalues don’t work out right in
general.

Problem 5: Do problem 6 in section 7.1 (pg. 368).

(10 points)

a) This T" does not satisfy either criterion. For example, if v = (1,0,0) and
w = (0,1,0), then T(v +w) = (1,1,0)/v/2 # (1,0,0) + (0,1,0) and T(2v) =
(1,0,0) # 2(1,0,0).

b) This satisfies both; it is a linear transformation. In fact, it is the linear
transformation from R3 to R given by multiplying by the matrix [1, 1, 1].

c) This again satisfies both; it is the linear transformation from R3 to R? given
by the matrix

S O =
o NN O
w o O

d) This satisfies neither criterion. For example, if v = (—1,0,0) and w = (2,0,0),
then T'(v +w) =1# 0+ 2 and T'(—v) = 1 # —1(0).

Problem 6: Do problem 12 in section 7.1 (pg. 369).

(10 points)

The quickest way to do each of these is to write the given vector as a linear
combination of the basis (1,1) and (2,0). To find the coefficients in the new basis,
we multiply by the change-of-base matrix

E g] - {1(/)2 —11/2]
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a) Because

w2 -1 1] ]

we see that (2,2) =2(1,1) +0(2,0). (Of course we could have seen this more easily
directly.) So T'((2,2)) =2T(1,1) + 0T(2,0) = 2(2,2) = (4,4).

w2 -1z 1] L

we see that (3,1) = (1,1)+(2,0). So T((3,1)) =T(1,1)+T(2,0) = (2,2)+(0,0) =

(2,2).
[192 —11/2] {_11] - {—11}
we see that (—1,1) = (1,1) — (2,0). So T((—1,1)) = T(1,1) — T(2,0) = (2,2).

0 1 al b
I | R
we see that (a,b) = b(1, 1)+ 22(2,0). So T((a,b)) = bT'(1,1)+ %52T(2,0) = b(2,2).

b) Because

c¢) Because

d) Because

Problem 7: Do problems 5 and 7 in section 7.2 (pg. 380-381).

(55 points)

Problem 5: T is a linear transformation from the three-dimensional space V'
to the three-dimensional space W. Once we choose a basis for V and W we can
associate a (unique) matrix to 7. Remember, we form the the ith column of A by
putting in T'(v;) in terms of w;. For example, because T'(v1) = wy, the first column
must be [0,1,0]7. Thus 7 must have the matrix

A:

O = O

11
0 0
11

Problem 7: Since T'(ve) = T'(v3) (and there are no other linear relations), the
nullspace of T" has basis vy —v3. That is, T'(c(ve —v3)) = ¢(T'(v2) — T'(v3)) = 0. This
corresponds to the column vector [0, 1, —1]7, which one can check for A easily.
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The complete solution to T'(v) = wy is the particular solution plus the nullspace.
Since a particular solution is vy, the complete solution is all vectors of the form
v + ¢(vy — v3), or in vectors [1,0,0]" + ¢[0, 1, —1]7.

Problem 8: Do problem 16 in section 7.2 (pg. 381).

(10 points)
r S
t u

a) This is just the matrix
Remember that the first column of a matrix is where (1,0) goes, and the second
column is where (0, 1) goes.

b) This is the change-of-base matrix that is the inverse of the change we just
did: .
a b 1 d —b
[c d] "~ ad —be {—c a}

c¢) Of course we can’t do this when ad — bc = 0, that is, we can’t do this if the
vectors are dependent. If they are in the same direction, we must also get vectors
in the same direction after doing 7.

You can check by hand!

Problem 9: Do problem 28 in section 7.2 (pg. 382).

(5 points)

Repeating the statement: suppose we have an invertible linear transformation.
Then pick any basis vy, ..., v, of V, and pick the basis w; = T'(v;) of W. Then of
course with these bases T' corresponds to the identity matrix.

The question is why we need T to be invertible for this to work. If T' is not
invertible, then in fact the T'(v;) can’t form a basis because they will be linearly
dependent. This is because if T is not invertible, then there is a vector a;v; + ... +
a,vy, in the nullspace (and not all of the a; are 0). That is,

T(ayvy + ...+ apvy) = a1 T(v1) + ...+ a,T(v,) =0

This gives a linear dependence relation between the T'(v;).



If T is invertible, then the T'(v;) must be linearly independent, for precisely the
same reason; if there were a linear relation, then 7" would have to have a non-trivial
nullspace.

Problem 10: Do problem 13 in section 7.4 (pg. 398).

(10 points)

Here A is a 1 by 3 matrix, so U will be 1 by 1 and V" will be 3 by 3. We start by
finding V and Y. Note that AT A will have eigenvector [3,4,0]7 with eigenvalue 25,
and then two perpendicular eigenvectors each with eigenvalue 0. We can find these
eigenvectors by taking the nullspace of A: it has special solutions [—4/3,1,0]” and
[0,0,1]7. Remember that we must renormalize these vectors when forming V. So
we have

3/5 —4/5 0
V=14/5 3/5 0
0o 0 1

The singular value oy = 5 is the square root of the eigenvalue. Finally, since U is a
unit 1 by 1 vector, it must be either [1] or [—1], and using Av; = oyu; shows that it
is [1]. Writing it all down, we get

3/5 —4/5 0]"
A=[1][5 0 0] |4/5 3/5 0
0 0 1

The pseudoinverse A* = VE+UH, Writing it down, we get

3/5 —4/5 0] [1/5
At ={4/5 3/5 0| | 0 |[1]"
0 0 1]]0

The product AA™ is projection onto the column space of A. However, the
column space of A is just [c¢]. So we should expect to get the identity 1 by 1 matrix:

AAT = USVREVSTUR = UsstU" = Ut = [1]

The other way round, A'A is projection onto the row space of A. Calculating, we
get

100
AtA=vtuiusv? = vio o ol vH
00 0



and since v; is a unit vector, this is just projection onto the space generated by vy,
namely, the row space of A.

Problem 11: Do problem 16 in section 7.4 (pg. 399).

(10 points)

The SVD will equal the diagonalization QAQ? when A is symmetric positive
semi-definite. (The answer “positive definite” is acceptable, since that is what the
phrasing would lead you to believe.)

Let’s prove it by diagonalizing AT A to find V and X. Suppose that A is symmet-
ric positive semidefinite - then it has non-negative real eigenvalues and orthonormal
eigenvectors. Write the diagonalization A = QAQT. We have ATA = A2, so the
diagonalization is AT A = QA%2QT. Thus V = Q. Also, because all of the eigenvalues
are non-negative, taking the square roots of the entries of A% returns A. So ¥ = A.
Finally, U = AVY ™! =  as well.

Note: if A weren’t positive semidefinite, then the square roots of the diagonal of
A? wouldn’t give us A because some of the signs would be switched. U would then
be @ but with some of the signs of the vectors switched to compensate.
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