18.06 Problem Set 7
Due Wednesday, 16 April 2008 at 4 pm in 2-106.

Problem 1: Do problem 1 in section 6.3 (pg. 315) in the book.

(10 points)

We solve a linear system of differential equations by taking
u(t) = creMay + cpeay

where Aq, Ay are the eigenvalues, x1, 9 are the eigenvectors, and ¢y, ¢y are constants
that satisfy c;xy + coxs = u(0).

To write down the matrix exponential explicitly, we must find the eigenvalues
and eigenvectors of A. Since this A is diagonal, its eigenvalues are just the diagonal
entries, i.e. Ay = 4 and Ay = 1. The eigenvectors are x; = (1,0) and x5 = (1, —1).
Finally, if u(0) = (5, —2) we must find how to write u(0) as a linear combination of
x1 and z5. We do this by solving the equation

b A -1

We get ¢o = 2 and ¢; = 3. So, the final equation is

u(t) = 3e* H + 2¢' [_11}

Problem 2: Do problem 3 in section 6.3 (pg. 315).

(10 points)

To linearize this system, we identify u with the vector [y, 4T, so that we have
two equations dy/dt = y' and dy'/dt = y” = 4y + 5y’. That is, we can “decouple”
the differential equation by adding 3" as a new variable, to obtain the system

dy/dt| (0 1] |y

dy'/dt| |4 5| |y
We call the coefficient matrix A as usual. The eigenvalues of A satisfy the equation
A2 —5X —4 =0, so the eigenvalues are A; = (5 + v/41) and Ay = 1(5 — V/41).
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Another way to find the eigenvalues is to substitute y = e into the differential

equation. We obtain
NN = B5xeM 4 e

Dividing by e, we find the same relationship A — 5\ — 4 = 0.

Problem 3: a) Do problem 17 in section 6.3 (pg. 317).
b) Do problem 24 in section 6.3 (pg. 318).

(5+5 points)

a) The infinite series for B! is
Bt Lo o
e :I+tB+§tB + ...

However, since B? = 0, all the terms of this sequence will be zero except for the first
two. Thus

Bt_ o ]_ _t
e —I+tB—{O 1

The derivative is
Bt |10 —1
d(e”")/dt = {O 0 ]

Of course, this is the same thing as BeP! (just multiply it out).

b) First, recall that eA*? = e4e? whenever AB = BA. The matrices A and —A
always commute (both products are —A?), so ete™4! = e* = I. Thus e? is always
invertible. You could also check this by multiplying out the power series formally.

Second, we know that e has diagonalization Se**S~!. That is, the eigenvalues
of e/t are just e for eigenvalues A of A. However, e is never 0, so e never has 0
for an eigenvalue, meaning that it is always invertible.

Problem 4: a) Do problem 4 in section 6.4 (pg. 327).
b) Do problem 10 in section 6.4 (pg. 327).

(5+5 points)

a) We need to diagonalize A; since A is symmetric, we know that we will be able
to pick perpendicular eigenvectors. If we normalize these eigenvectors to length 1,
the eigenvector matrix will be orthogonal. A has eigenvalues given by the equation



A2 —5X — 50 = 0, so A has eigenvalues A\; = 10 and Ay = —5. The corresponding

eigenvectors of unit length are z; = \/ig[l, 2] and zy = \%[—2, 1]7. So

0=z 1]

b) The flaw here is that 2”7z is not necessarily a real number (and neither is
2T Ax). We know that 2%z is always real, since it is the length of = squared. But
in general x7x is not real - take for example the one-component vector x = [1 + i].

Problem 5: Do problem 15 in section 6.4 (pg. 328).

(10 points)

We diagonalize

The eigenvalues are given by the equation A\* = 0, so the only eigenvalue is A\ = 0.
The eigenvectors are then given by the nullspace of A. We find this using row
reduction, just as for real matrices:

1 |t 1

1 —i 00
The nullspace is one dimensional, meaning that every eigenvector is a multiple of
(1, —]7.

Problem 6: Do problem 24 in section 6.4 (pg. 329).

(10 points) (No justifications necessary.)

We start with A. It is definitely invertible. It is orthogonal since PT = P~!
(both are equal to P). It is not a projection matrix because P? # P. It is clearly
a permutation matrix. It is diagonalizable because it is symmetric (so that we
can find a basis of orthonormal eigenvectors). It is Markov because all entries are
non-negative and the columns add to 1.

A does not have an LU-decomposition, because we must do a row swap in
reducing A. It does have a (QR-decomposition because the columns are linearly
independent. It is diagonalizable, so it has an SAS~! decomposition. Because it is
also symmetric, the diagonalization actually gives a QAQT decomposition.

3



B is not invertible (it has rank 1). It is not orthogonal as it has no inverse. It
is a projection matrix, because B2 = B and BT = B - in fact it projects onto the
vector (1,1,1). It is not a permutation matrix. It is diagonalizable because it is
symmetric. It is Markov.

B does have an LU-decomposition, since we do not need a row swap. It doesn’t
have a () R-decomposition because the columns are dependent. It is diagonalizable
and symmetric, so it has both a SAS™! and a QAQT factorization.

Problem 7: Do problems 3 and 4 from section 10.2 (pg. 492).

(10 points)

We solve the equation Az = 0 by reducing:
i 1 i 1
AN
1 7 1 2 1—1

1
0
- 1 — 1
0 1 (i—1)/2
1
0

This matrix has one free column, so we get one special solution
(—(+1)/2,-(i+1)/2,1)

I'll rescale to use z = (i + 1,7 + 1, —2) instead, it doesn’t make any difference. The
matrix A7 is

Column 1 is [—4, 1, —i]?. To calculate C; - z, we need to take
[0 4+ 1]

Cr-z=Clz=1[i,1,q] |i+1| =0
Similarly,

Cy-z=Clz=[1,i,i] |i+1| =0




Of course these equations must be true; by taking the Hermitian of a column of A,
we are just getting a row of A, and we know that any row of A times a vector in the
nullspace gives 0.

The matrix AT is

AT =

S = S
S S

These columns are not perpendicular to z, for example
141
Cr-z2=0CFz=[-i,1,—i] |i+1| =2+2i
-2

Putting all this together, we see that the four fundamental spaces should be
C(A), N(A), C(A") and N(AHT). They will satisfy the same orthogonal relation-
ships as before: N(A) and C(Af) are orthogonal complements, and C(A) and
N(Af) are orthogonal complements.

Problem 8: Do problem 15 from section 10.2 (pg. 493).

(10 points)

Since A is Hermitian, we expect it to have real eigenvalues, and a unitary eigen-
vector matrix U.

A has eigenvalues given by the equation A2—\—2 = 0, so we find eigenvalues \; =
2 and Ay = —1. The corresponding normalized eigenvectors are x; = \/Lé[l —1,2]7
and zy = \/Lg [i—1,1]T. (Another choice in the same direction is %6[—2, 1+1]7, which

is more symmetric-looking.) So we obtain
2 0
=l 4

1 [1—i -2
U‘%{ 2 1+z}

Since the columns of U are (complex) orthogonal unit vectors, U is unitary.

and

Problem 9: Do problem 6 in section 10.3 (pg. 500).

(10 points)



The Fourier matrix F} is

1 1 1 1
1 ¢ =1 —
Bo=1y 20 1 4
1 — -1 3
We can multiply this out to find
4 0 00
> |00 0 4
Fy = 0040
0400
and
6 0 0 O
0 16 0 0
4
Fi = 0 0 16 0
0 0 0 16

Problem 10: Do problem 11 in section 10.3 (pg. 501).

(10 points)

Multiplying the two given matrices, we find that the eigenvalues are A\; = 1,
Ao =i, A3 =14*=—1,and \; =* = —i.



