
18.06 Problem Set 7
Due Wednesday, 16 April 2008 at 4 pm in 2-106.

Problem 1: Do problem 1 in section 6.3 (pg. 315) in the book.

Solution (10 points)
We solve a linear system of differential equations by taking

u(t) = c1e
λ1tx1 + c2e

λ2tx2

where λ1, λ2 are the eigenvalues, x1, x2 are the eigenvectors, and c1, c2 are constants
that satisfy c1x1 + c2x2 = u(0).

To write down the matrix exponential explicitly, we must find the eigenvalues
and eigenvectors of A. Since this A is diagonal, its eigenvalues are just the diagonal
entries, i.e. λ1 = 4 and λ2 = 1. The eigenvectors are x1 = (1, 0) and x2 = (1,−1).
Finally, if u(0) = (5,−2) we must find how to write u(0) as a linear combination of
x1 and x2. We do this by solving the equation[

1 1
0 −1

] [
c1

c2

]
=

[
5
−2

]
We get c2 = 2 and c1 = 3. So, the final equation is

u(t) = 3e4t

[
1
0

]
+ 2et

[
1
−1

]

Problem 2: Do problem 3 in section 6.3 (pg. 315).

Solution (10 points)
To linearize this system, we identify u with the vector [y, y′]T , so that we have

two equations dy/dt = y′ and dy′/dt = y′′ = 4y + 5y′. That is, we can “decouple”
the differential equation by adding y′ as a new variable, to obtain the system[

dy/dt
dy′/dt

]
=

[
0 1
4 5

] [
y
y′

]
We call the coefficient matrix A as usual. The eigenvalues of A satisfy the equation
λ2 − 5λ− 4 = 0, so the eigenvalues are λ1 = 1

2
(5 +

√
41) and λ2 = 1

2
(5−

√
41).
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Another way to find the eigenvalues is to substitute y = eλt into the differential
equation. We obtain

λ2eλt = 5λeλt + 4eλt

Dividing by eλt, we find the same relationship λ2 − 5λ− 4 = 0.

Problem 3: a) Do problem 17 in section 6.3 (pg. 317).
b) Do problem 24 in section 6.3 (pg. 318).

Solution (5+5 points)
a) The infinite series for eBt is

eBt = I + tB +
1

2
t2B2 + . . .

However, since B2 = 0, all the terms of this sequence will be zero except for the first
two. Thus

eBt = I + tB =

[
1 −t
0 1

]
The derivative is

d(eBt)/dt =

[
0 −1
0 0

]
Of course, this is the same thing as BeBt (just multiply it out).

b) First, recall that eA+B = eAeB whenever AB = BA. The matrices A and −A
always commute (both products are −A2), so eAte−At = e0 = I. Thus eAt is always
invertible. You could also check this by multiplying out the power series formally.

Second, we know that eAt has diagonalization SeΛtS−1. That is, the eigenvalues
of eAt are just eλt for eigenvalues λ of A. However, eλt is never 0, so eAt never has 0
for an eigenvalue, meaning that it is always invertible.

Problem 4: a) Do problem 4 in section 6.4 (pg. 327).
b) Do problem 10 in section 6.4 (pg. 327).

Solution (5+5 points)
a) We need to diagonalize A; since A is symmetric, we know that we will be able

to pick perpendicular eigenvectors. If we normalize these eigenvectors to length 1,
the eigenvector matrix will be orthogonal. A has eigenvalues given by the equation
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λ2 − 5λ − 50 = 0, so A has eigenvalues λ1 = 10 and λ2 = −5. The corresponding
eigenvectors of unit length are x1 = 1√

5
[1, 2]T and x2 = 1√

5
[−2, 1]T . So

Q =
1√
5

[
1 −2
2 1

]

b) The flaw here is that xT x is not necessarily a real number (and neither is
xT Ax). We know that xHx is always real, since it is the length of x squared. But
in general xT x is not real - take for example the one-component vector x = [1 + i].

Problem 5: Do problem 15 in section 6.4 (pg. 328).

Solution (10 points)
We diagonalize

A =

[
i 1
1 −i

]
The eigenvalues are given by the equation λ2 = 0, so the only eigenvalue is λ = 0.
The eigenvectors are then given by the nullspace of A. We find this using row
reduction, just as for real matrices:[

i 1
1 −i

]
 

[
i 1
0 0

]
The nullspace is one dimensional, meaning that every eigenvector is a multiple of
[1,−i]T .

Problem 6: Do problem 24 in section 6.4 (pg. 329).

Solution (10 points) (No justifications necessary.)
We start with A. It is definitely invertible. It is orthogonal since P T = P−1

(both are equal to P ). It is not a projection matrix because P 2 6= P . It is clearly
a permutation matrix. It is diagonalizable because it is symmetric (so that we
can find a basis of orthonormal eigenvectors). It is Markov because all entries are
non-negative and the columns add to 1.

A does not have an LU -decomposition, because we must do a row swap in
reducing A. It does have a QR-decomposition because the columns are linearly
independent. It is diagonalizable, so it has an SΛS−1 decomposition. Because it is
also symmetric, the diagonalization actually gives a QΛQT decomposition.
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B is not invertible (it has rank 1). It is not orthogonal as it has no inverse. It
is a projection matrix, because B2 = B and BT = B - in fact it projects onto the
vector (1, 1, 1). It is not a permutation matrix. It is diagonalizable because it is
symmetric. It is Markov.

B does have an LU -decomposition, since we do not need a row swap. It doesn’t
have a QR-decomposition because the columns are dependent. It is diagonalizable
and symmetric, so it has both a SΛS−1 and a QΛQT factorization.

Problem 7: Do problems 3 and 4 from section 10.2 (pg. 492).

Solution (10 points)
We solve the equation Az = 0 by reducing:[

i 1 i
1 i i

]
 

[
i 1 i
0 2i i− 1

]
 

[
1 −i 1
0 1 (i− 1)/2i

]
 

[
1 0 (i + 1)/2
0 1 (i + 1)/2

]
This matrix has one free column, so we get one special solution

(−(i + 1)/2,−(i + 1)/2, 1)

I’ll rescale to use z = (i + 1, i + 1,−2) instead, it doesn’t make any difference. The
matrix AH is

AH = A
T

=

−i 1
1 −i
−i −i


Column 1 is [−i, 1,−i]T . To calculate C1 · z, we need to take

C1 · z = CH
1 z = [i, 1, i]

i + 1
i + 1
−2

 = 0

Similarly,

C2 · z = CH
2 z = [1, i, i]

i + 1
i + 1
−2

 = 0
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Of course these equations must be true; by taking the Hermitian of a column of AH ,
we are just getting a row of A, and we know that any row of A times a vector in the
nullspace gives 0.

The matrix AT is

AT =

i 1
1 i
i i


These columns are not perpendicular to z, for example

C1 · z = CH
1 z = [−i, 1,−i]

i + 1
i + 1
−2

 = 2 + 2i

Putting all this together, we see that the four fundamental spaces should be
C(A), N(A), C(AH) and N(AH). They will satisfy the same orthogonal relation-
ships as before: N(A) and C(AH) are orthogonal complements, and C(A) and
N(AH) are orthogonal complements.

Problem 8: Do problem 15 from section 10.2 (pg. 493).

Solution (10 points)
Since A is Hermitian, we expect it to have real eigenvalues, and a unitary eigen-

vector matrix U .
A has eigenvalues given by the equation λ2−λ−2 = 0, so we find eigenvalues λ1 =

2 and λ2 = −1. The corresponding normalized eigenvectors are x1 = 1√
6
[1 − i, 2]T

and x2 = 1√
3
[i−1, 1]T . (Another choice in the same direction is 1√

6
[−2, 1+i]T , which

is more symmetric-looking.) So we obtain

Λ =

[
2 0
0 −1

]
and

U =
1√
6

[
1− i −2

2 1 + i

]
Since the columns of U are (complex) orthogonal unit vectors, U is unitary.

Problem 9: Do problem 6 in section 10.3 (pg. 500).

Solution (10 points)
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The Fourier matrix F4 is

F4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


We can multiply this out to find

F 2
4 =


4 0 0 0
0 0 0 4
0 0 4 0
0 4 0 0


and

F 4
4 =


16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16



Problem 10: Do problem 11 in section 10.3 (pg. 501).

Solution (10 points)
Multiplying the two given matrices, we find that the eigenvalues are λ1 = 1,

λ2 = i, λ3 = i2 = −1, and λ1 = i3 = −i.
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