
18.06 Problem Set 6
Due Wednesday, 9 April 2008 at 4 pm in 2-106.

Problem 1: a) Do problem 2 from section 6.1 (pg. 283) in the book.
b) Do problem 9 from section 6.1 (pg. 284).

Solution (5+5 points)
a) To find the eigenvalues of A, we take the determinant of A − λI, where λ is

a variable:

det(A − λI) = det

[
1 − λ 4

2 3 − λ

]
= (1 − λ)(3 − λ) − 8

This simplifies to λ2−4λ−5, which has roots 5,−1. (A shortcut to find this equation
for a 2 by 2 matrix is to take λ2 − tr(A)λ + det(A).) We then find the eigenvectors
with eigenvalue 1 by taking the nullspace of A − (5)I: the nullspace of

A − 5I =

[
−4 4
2 −2

]
is given by the basis [1, 1]T . Similarly,

A − (−1)I =

[
2 4
2 4

]
has nullspace given by the basis [−2, 1]T . In sum, the eigenvalue 5 leads to eigen-
vector (1, 1), and the eigenvalue −1 leads to the eigenvector (−2, 1).

We now consider A + I. The equation giving the eigenvalues is λ2 − 6λ = 0.
This has roots 0, 6. Note that (A+ I)−0I and (A+ I)−6I are exactly the matrices
we had as before. So they have the same nullspaces. That is, A + I has the same
eigenvectors as A, but the eigenvalues have increased by 1.

b) Part 1: if Ax = λx, then x is also an eigenvector of A2 with eigenvalue λ2,
because

A2x = A(λx)

= λ(Ax)

= λ(λx)
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Part 2: Supposing that A is invertible, x is an eigenvector of A−1 with eigenvalue
λ−1: we just take the equation Ax = λx and multiply both sides by λ−1A−1 to get
λ−1x = λ−1A−1(λx) = A−1x.

Part 3: If Ax = λx, then (A + I)x = λx + x = (λ + 1)x.

Problem 2: Do problem 13 from section 6.1 (pg. 285) in the book.

Solution (10 points)
a) We have Pu = uuT u = u because uT u = u · u = 1. So u is an eigenvector

with eigenvalue 1.
b) If v is perpendicular to u then 0 = u · v = uT v. So Pv = uuT v = 0, showing

that v has eigenvalue 0.
c) By part b, it suffices to find three independent vectors perpendicular to u

(and in fact this will be equivalent). Using the fact that the row space and null
space are perpendicular, we need to find three independent vectors in the nullspace
of [1/6, 1/6, 3/6, 5/6]. We obtain special solutions [−1, 1, 0, 0]T , [−3, 0, 1, 0]T , and
[−5, 0, 0, 1]T .

Problem 3: Consider the matrix

M =


2 2 1 1

−14 −6 −9 −7
−2 −1 −2 −1
8 1 7 4


a) One eigenvector is x1 = (1, 1, 0,−3). What is the corresponding eigenvalue?
b) Note that det(M) = 0. Use this information to find another eigenvalue λ2 -

how do you know this must be an eigenvalue?
c) A third eigenvalue is λ3 = −1. Write down (but don’t solve) a linear system

that can be solved to find x3.
d) What is the fourth eigenvalue? (Hint: use the trace.)

Solution (10 points)
a) Since x1 is an eigenvector, we have Mx1 = λ1x1 for the corresponding eigen-

value λ1. So we just calculate Mx1 = [1, 1, 0,−3]T . Thus λ1 = 1.
b) We know that det(M) is the product of the eigenvalues. If det(M) = 0,

then one eigenvalue must be 0. (Another way of thinking about it: if M is not
invertible, then it has a non-trivial nullspace, which means that it has eigenvectors
with eigenvalue 0.) So we get λ2 = 0.
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c) To find the eigenvector corresponding to −1, we would need to solve the
equations (M − (−1)I)x = 0.

d) The eigenvalues add up to the trace. The trace is the sum of the diagonal
entries; in this case, tr(M) = −2. So our fourth eigenvalue is −2.

Problem 4: a) Do problem 8 in section 6.2 (pg. 299)
b) Do problem 18 in section 6.2 (pg. 300)

Solution (5+5 points)
a) If a matrix has linearly independent eigenvectors, then it can be diagonalized.

So every matrix with eigenvectors (1, 1) and (1,−1) can be diagonalized to give

A = SΛS−1 =

[
1 1
1 −1

] [
λ1 0
0 λ2

] [
1 1
1 −1

]−1

Simplifying, we find

A =

[
λ1 λ2

λ1 −λ2

]
1

−2

[
−1 −1
−1 1

]
=

[
(λ1 + λ2)/2 (λ1 − λ2)/2
(λ1 − λ2)/2 (λ1 + λ2)/2

]

b) The matrix A only has eigenvalue 3. The corresponding eigenvectors are the
nullspace of A − 3I. However, this matrix has rank 1 (in fact the only eigenvectors
are (a, 0)). So, we can’t find two linearly independent eigenvectors, and A is not
diagonalizable.

To make it diagonalizable, we could change any entry but the top-right one
arbitrarily (we could also change the top right entry to 0). For example, we could
change the top-left 3 to a 2. The new matrix has different eigenvalues 2, 3, and so
it is automatically diagonalizable.

Problem 5: Here’s an example of an invertible 3 by 3 matrix with only 2 different
eigenvalues:

A =

4 1 −1
2 5 −2
1 1 2


a) Find the eigenvalues of A.
b) Find 3 linearly independent eigenvectors of A.
c) Is A diagonalizable? If so, write down a diagonalization A = SΛS−1.
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Solution (4+4+2 points)
We find the eigenvalues of A by computing the determinant of A − λI:

det

4 − λ 1 −1
2 5 − λ −2
1 1 2 − λ

 = (4 − λ)(λ2 − 7λ + 12) − (4 − 2λ + 2) + (−1)(2 − 5 + λ)

= −λ3 + 11λ2 − 39λ + 45

This equation has roots 3, 3, 5 (that is, the root 3 has multiplicity 2). So these are
the eigenvalues.

Here’s another way: since you know there are only two different eigenvalues, you
can use the trace and determinant equations. Let λ1 be the double eigenvalue, so
that

λ2
1λ2 = det(A)

2λ1 + λ2 = tr(A)

Solving these two equations give the same answer.

b) To find the eigenvectors with eigenvalue 3, we find the nullspace of A − 3I:4 − 3 1 −1
2 5 − 3 −2
1 1 2 − 3

  

1 1 −1
0 0 0
0 0 0


So A− 3I has rank 1, meaning that we can find two linearly independent vectors in
the nullspace. The easiest way is just to take the basis given by the special solutions:
e1 = [−1, 1, 0]T and e2 = [1, 0, 1]T .

To find the eigenvectors with eigenvalue 5, we find the nullspace of A − 5I:4 − 5 1 −1
2 5 − 5 −2
1 1 2 − 5

  

−1 1 −1
0 2 −4
0 2 −4


 

−1 1 −1
0 1 −2
0 0 0


 

1 0 −1
0 1 −2
0 0 0


We have one special solution, e3 = [1, 2, 1]T .
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c) Because we can find 3 linearly independent eigenvectors for A, it is diagonal-
izable. We can take Λ to be the matrix with 3, 3, 5 on the diagonal, and S to be the
matrix with columns e1, e2, e3.

Problem 6: Do problems 15 and 16 in section 6.2 (pg. 300).

Solution (5+5 points)
If the eigenvalues of A are 2, 2, 5, then:

1. True. A is invertible, because it has no vectors with eigenvalue 0.

2. False. A may be non-diagonalizable. If it had three different eigenvalues it
would be diagonalizable, but with only 2 we can’t tell.

3. False. A may be diagonalizable. Again, the fact that there is a repeated eigen-
value doesn’t automatically mean that A is not diagonalizable (the previous
problem gave an example).

If the only eigenvectors of A are multiples of (1, 4), then:

1. False. A may or may not have an inverse. You can’t tell, because you don’t
know if it has any eigenvalues of 0 or not.

2. True. A must have a repeated eigenvalue. If it had two different eigenvalues,
it would have two linearly independent eigenvectors.

3. True. A is diagonalizable if and only if A has 2 linearly independent eigenvec-
tors, but it only has 1.

Problem 7: Do problem 22 in section 6.2 (pg. 301).

Solution (10 points)
We find the eigenvalues of A by solving the equation det(A − λI) = 0. This

equation is (2 − λ)2 − 1 = λ2 − 4λ + 3 = 0, so A has eigenvalues 3 and 1. The
corresponding eigenvectors are the nullspaces of A− 3I and A− I; they turn out to
be [1, 1]T and [1,−1]T respectively. So

A =

[
1 1
1 −1

] [
3 0
0 1

] [
1 1
1 −1

]−1

=
1

2

[
1 1
1 −1

] [
3 0
0 1

] [
1 1
1 −1

]
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Thus

Ak =
1

2

[
1 1
1 −1

] [
3k 0
0 1k

] [
1 1
1 −1

]
=

1

2

[
3k + 1 3k − 1
3k − 1 3k + 1

]

Problem 8: Do problem 7 in section 8.3 (pg. 429).

Solution (10 points)
Since M is a Markov matrix, it has one eigenvalue λ1 = 1. We can find the

other using the trace: tr(A) = 1.5 so the other eigenvalue is 0.5. Of course we could
also find this directly.

The eigenvector for 1 is an element of the nullspace of

A − I =

[
−0.2 0.3
0.2 −0.3

]
The nullspace has basis [0.6, 0.4]T (or any multiple; usually when we work with
Markov matrices we normalize our eigenvectors so the columns add up to 1). Sim-
ilarly, the eigenvector for 0.5 is an element of the nullspace of A − 0.5I, which has
basis [0.5,−0.5]T .

A is diagonalized by the matrices

Λ =

[
1 0
0 0.5

]

S =

[
0.6 0.5
0.4 −0.5

]
We can now calculate A16:

A16 =

[
0.6 0.5
0.4 −0.5

] [
1 0
0 1/216

] [
0.6 0.5
0.4 −0.5

]−1

Problem 9: Do problem 8 in section 8.3 (pg. 429).

Solution (10 points)
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In problem 7, we found that the steady state vector of A is [0.6, 0.4]T . Now,
consider Ak for very large k. The first column of this matrix is Ak−1 acting on
[0.8, 0.2]T , but of course this goes to the steady state as k increases. Similarly, the
second column of this matrix is Ak−1 acting on [0.3, 0.7]T , which also goes to the
steady state.

The challenge problem is optional. It is very similar to problem 4a from this
problem set. We need to find Markov matrices with eigenvector [0.6, 0.4] corre-
sponding to eigenvalue 1, and we can find this using the diagonalization just as
before.

Problem 10: A Matlab question: The page rank algorithm in Google is essentially
solving an eigenvalue problem for a matrix M with size in the billions. The method
is discussed on pages 358-359 of the textbook; you can find more information in an
article by Cleve Moler (MATLAB founder):

www.mathworks.com/company/newsletters/news_notes/clevescorner/oct02_cleve.html

The idea is to start crawling randomly from a website and count the frequency
of hitting each site. We create an adjacency matrix that represents the links be-
tween websites. By rescaling the columns, we obtain a Markov matrix M - it tells
us the probability of getting to a website by following a random link. If we act by
M repeatedly, vectors will tend to the steady state vector. We’ll call this the evec-
tor. The evector represents the total frequency of links to a site, and so sites with
larger entries should have higher page ranks. Google finds the evector by crawling
randomly through sites.

Model this with a 6 by 6 Markov matrix M and print the output:

W=ceil(rand(6) - .55*ones(6)) % create a 1-0 web link matrix W

M=W*diag(1./sum(W)) % Markov with column sums = 1 Check sum(M)

[S,L]=eig(M) % S = eigenvector matrix of M and L = eigenvalues

x=S(:,1); v=x/sum(x) % first column is usually evector v>0 for evalue=1

Start from the first website :

u=[1,0,0,0,0,0]’
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Now Mu is the first column of M . Using the column Mu, figure out the probabilities
of reaching site 1 to 6.

Define a vector f that is the fraction of times you hit each of the websites as you
continue to crawl. I think f should approach the evector v if you act by M enough
times. Does it?

Solution (10 points)
I copied my session below. As you can see, the code yields a Markov matrix M .

The matrices S and L encode the eigenvector and eigenvalue information (they are
just the M = SΛS−1 matrices). Since 1 is the highest eigenvalue, it corresponds to
the first columns of S and L, so the first column of S is (almost always) the steady
state. The code sets v to be this column.

In my case, there are four links from website 1, leading to websites 1 (it’s a
narcissistic website), 3, 5, and 6. So, they each get an equal probability 0.25.

Then f represents Mku as k increases. It should approach the steady state v if
k is big enough. Comparing v and M50u, we see that they are practically equal.

EDU>> W = ceil(rand(6)-.55*ones(6))

W =

1 0 1 0 0 0

0 0 1 1 0 1

1 1 0 0 0 0

0 0 0 0 1 1

1 1 1 1 0 0

1 1 1 0 0 0

EDU>> M=W*diag(1./sum(W))

M =

0.2500 0 0.2500 0 0 0

0 0 0.2500 0.5000 0 0.5000

0.2500 0.3333 0 0 0 0

0 0 0 0 1.0000 0.5000

0.2500 0.3333 0.2500 0.5000 0 0

0.2500 0.3333 0.2500 0 0 0

EDU>> [S,L]=eig(M)

S =

Columns 1 through 3

-0.0571 0.0706 + 0.0802i 0.0706 - 0.0802i

-0.4712 0.6103 0.6103

-0.1713 -0.3115 - 0.1838i -0.3115 + 0.1838i

-0.6425 -0.2923 + 0.4745i -0.2923 - 0.4745i
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-0.5354 0.1518 - 0.3091i 0.1518 + 0.3091i

-0.2142 -0.2289 - 0.0618i -0.2289 + 0.0618i

Columns 4 through 6

-0.4982 0.6463 0.4607

0.1149 -0.5735 0.1455

-0.2346 -0.1558 -0.8259

0.5959 0.2215 0.1393

0.4161 0.2226 -0.1356

-0.3941 -0.3612 0.2159

L =

Columns 1 through 3

1.0000 0 0

0 -0.5546 + 0.2629i 0

0 0 -0.5546 - 0.2629i

0 0 0

0 0 0

0 0 0

Columns 4 through 6

0 0 0

0 0 0

0 0 0

0.3677 0 0

0 0.1897 0

0 0 -0.1982

EDU>> x=S(:,1);v=x/sum(x)

v =

0.0273

0.2253

0.0819

0.3072

0.2560

0.1024

EDU>> u=[1,0,0,0,0,0]’

u =

1

0

0

0

0
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0

EDU>> M*u

ans =

0.2500

0

0.2500

0

0.2500

0.2500

EDU>> M^50*u

ans =

0.0273

0.2253

0.0819

0.3072

0.2560

0.1024
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