
18.06 Problem Set 5
Due Wednesday, 19 March 2008 at 4 pm in 2-106.

Problem 1: Do problem 12 from section 4.3 (pg. 217) in the book. There is a typo
in part c. It should read something like this:

c) Let’s analyze what happens when b = (1, 2, 6). In this case x̂ = 3 and the
projection onto the line is p = (3, 3, 3). Check that p is perpendicular to e. Also
find the projection matrix P .

Solution (4+3+3 points)
a) We know the vectors a and b, so we can just write this down: aT a = a ·a = m,

aT b = a · b =
∑

i bi, so x̂ = 1
m

∑
i bi. This is the average of the bi.

b) I’ll continue to use x̂ to denote the average of the bi. The error vector is
e = (b1 − x̂, b2 − x̂, . . .). The variance is then

‖e‖2 =
∑

i

(bi − x̂)2

=
∑

i

b2
i − 2x̂

∑
i

bi + mx̂2

=
∑

i

b2
i −mx̂2

=
∑

i

(
b2
i − x̂2

)
which is the usual expression. The standard deviation is the square root of this
quantity.

c) We have b = (1, 2, 6) and p = (3, 3, 3). The error is e = (−2,−1, 3), and
p · e = 0 as it should. The matrix P is

P = a(aT a)−1aT =
1

3

1 1 1
1 1 1
1 1 1



Problem 2: Do problem 17 from section 4.3 (pg. 217) in the book.

Solution (10 points)
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The points are (−1, 7), (1, 7), and (2, 21). So, our matrices are

A =

1 −1
1 1
1 2



b =

 7
7
21


We find the coeffiecients (C, D) by setting[

C
D

]
= x̂ = (AT A)−1AT b

=

[
3 2
2 6

]−1 [
35
42

]
=

1

14

[
6 −2
−2 3

] [
35
42

]
=

[
9
4

]
So the best fit line is b = 9+4t. When you draw it, it will look about right; I’m not
going to draw it here.

Problem 3: Find a function of the form f(t) = C sin(t)+D cos(t) that approximates
the three points (0, 0), (π/2, 2), and (π, 1). As explained in the book, the method
is the same as for fitting a line using least-squares! (See pg. 212 for a quadratic
example.) The difference is that the matrix A we use will no longer have columns
with entries 1 and ti but rather sin(ti) and cos(ti).

Solution (10 points)
Our matrix A will have columns given by sin(ti) and cos(ti), but everything else

is the same.

A =

0 1
1 0
0 −1


B =

0
2
1


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We find x̂ in the usual way.

x̂ = (AT A)−1AT b

=

[
1 0
0 2

]−1 [
2
−1

]
=

[
1 0
0 1

2

] [
2
−1

]
=

[
2
−1

2

]
Our best fit equation is f(t) = 2 sin(t) − 1

2
cos(t). Again, if you draw the graph,

you’ll see that it looks about right.

Problem 4: a) Show that if Q is orthogonal (i.e. Q is square with orthonormal
columns) then so is QT . Use the criteria QT Q = I.

b) If Q1 and Q2 are orthogonal, show that their product Q1Q2 is as well.

c) If Q has orthonormal columns but is not square, does QT have the same
property? What can you say about QQT and QT Q in this case? Give an example
for a 3 by 2 matrix Q.

Solution (3+3+4 points)
a) If Q is square, then so is QT . So, we just need to show that (QT )T = (QT )−1.

Multiplying: (QT )T QT = QQT . But this is the identity since QT = Q−1 (as Q is an
orthogonal matrix).

b) The same idea here: we must show that (Q1Q2)
T = (Q1Q2)

−1. Multiplying:
(Q1Q2)

T (Q1Q2) = QT
2 QT

1 Q1Q2 = QT
2 Q2 = I. Here we have used that QT

1 Q1 = I
and QT

2 Q2 = I.

c) It is not necessarily true that QT also has orthonormal columns - this is a
very special property of square matrices. For example, suppose

Q =

1 0
0 1

2

0
√

3
2


Q has orthonormal columns, but its transpose definitely does not (columns 2 and 3
of QT are not even orthogonal). In general, any matrix with orthonormal columns
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satisfies QT Q = I, but we can’t say anything useful about QQT when Q is not
square. For example, in this case

QQT =

1 0 0

0 1
4

√
3

4

0
√

3
4

3
4



Problem 5: Do problem 15 from section 4.4 (pg. 229). (Hint for part c: it may be
easiest to use the decomposition A = QR.)

Solution (10 points)
a) One way to do this is to use Gram-Schmidt on A to find q1, q2, and then

to find a perpendicular unit vector q3. Or, we can do it all in one step by adding
another column to A - we just need to keep in mind that only q1 and q2 will give
the Q for A, and not q3 as well.

I’ll use the latter method; I’ll set (1, 0, 0) to be the third vector. Running Gram-
Schmidt:

w1 = (1, 2,−2)

w2 = v2 −
v2 · w1

w1 · w1

w1

= (1,−1, 4)− −9

9
(1, 2,−2)

= (2, 1, 2)

w3 = v3 −
v3 · w1

w1 · w1

w1 −
v3 · w2

w2 · w2

w2

= (1, 0, 0)− 1

9
(1, 2,−2)− 2

9
(2, 1, 2)

=

(
4

9
,
−4

9
,
−2

9

)
Finally, we renormalize to find Q:

q1 =
1

3
(1, 2,−2)

q2 =
1

3
(2, 1, 2)
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q3 =
1

3
(2,−2,−1)

b) By running Gram-Schmidt, we have found a q3 perpendicular to q1 and q2.
This means that q3 is perpendicular to the column space of Q, which is the same as
the column space of A. We conclude that q3 is in the left-nullspace of A.

c) We must solve Ax = (1, 2, 7) by least squares. We find:

x̂ = (AT A)−1AT b

=

[
9 −9
−9 18

]−1 [
−9
27

]
=

1

9

[
2 1
1 1

] [
−9
27

]
=

[
1
2

]

Problem 6: Do problem 18 from section 4.4 (pg. 230). Then write down the
A = QR decomposition for the matrix A with columns the given vectors.

Solution (10 points)
We need to find orthogonal vectors by running Gram-Schmidt on

A =


1 0 0
−1 1 0
0 −1 1
0 0 −1


So, we find

w1 = (1,−1, 0, 0)

w2 = v2 −
v2 · w1

w1 · w1

w1

= (0, 1,−1, 0)− −1

2
(1,−1, 0, 0)

=

(
1

2
,
1

2
,−1, 0

)
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w3 = v3 −
v3 · w1

w1 · w1

w1 −
v3 · w2

w2 · w2

w2

= (0, 0, 1,−1)− 0

2
(1,−1, 0, 0)− −1

3/2

(
1

2
,
1

2
,−1, 0

)
=

(
1

3
,
1

3
,
1

3
,−1

)
Finally, we renormalize to find Q:

q1 =
1√
2
(1,−1, 0, 0)

q2 =

√
2√
3
(
1

2
,
1

2
,−1, 0)

q3 =

√
3

2
(
1

3
,
1

3
,
1

3
,−1)

We also need to find R. From the equation A = QR, we find R = QT A.
Multiplying, we get

R =


√

2 −1√
2

0

0
√

3√
2

−
√

2√
3

0 0 2√
3



Problem 7: Do problem 3 in section 5.1 (pg. 240).

Solution (10 points)
a) False. A counterexample is given by

A =

[
−1 0
0 −1

]
Then det(A) = 1 but det(A + I) = 0.

b) True. This is just the product rule for determinants applied twice.

c) False. If A has dimension n, the correct answer would be det(4A) = 4n det(A).
So the 2 by 2 identity is a counterexample.

Be careful here - it is true that the determinant is linear in each row separately.
So if we multiplied just one row by 4, we would multiply the determinant by 4 as
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well. But if we multiply every row by 4, we must multiply the determinant by one
factor of 4 for each row.

d) False. An example is given by

A =

[
1 1
0 1

]

B =

[
1 0
1 1

]
so that

AB −BA =

[
2 1
1 1

]
−

[
1 1
1 2

]
=

[
1 0
0 −1

]
which has determinant −1.

Problem 8: Do problem 8 in section 5.1 (pg. 241).

Solution (7+3 points)
a) We have

det(Q) det(Q) = det(QT ) det(Q) = det(QT Q) = det(I) = 1

Since det(Q)2 = 1, we must have det(Q) = ±1.

b) This problem is a bit tricky. The proper way to approach it is using eigen-
values and eigenvectors, but of course we haven’t talked about those yet.

We need to show that we can’t have | det(Q)| > 1. (The problem doesn’t ask
about the situation when | det(Q)| < 1, so we are not going to worry about it now.)
If the determinant were larger than 1, then the product rule tells us that | det(Qn)|
can be made arbitrarily large if we choose n large enough. However, we know that
the length of a vector is not changed by Q, that is ‖Qx‖ = ‖x‖. So, if we can
somehow compare the size of | det(Q)| to the length of vectors ‖Qx‖, we can come
up with a contradiction.

This relationship is most precisely described by eigenvalues, but here’s another
way. Suppose that A is any invertible matrix. We know that | det(A)| is the volume
of the paralleliped formed by the columns of A (the volume will be non-zero since the
system is non-degenerate). Now, suppose that we repeatedly act on these column
vectors by Q. First, recall that Q doesn’t change the length of any vectors. So, the
largest volume that we can end up with (no matter how many times we multiply
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by Q) is the product of the lengths of the columns of A. The volume can’t keep
increasing - it is bounded by some number.

However, each time we act on our vectors by Q we increase the volume of
the paralleliped by a factor of | det(Q)|. If | det(Q)| > 1, then the volume of our
paralleliped would become larger and larger as we act on it by Q more and more.
This is a contradiction to the boundedness we just found above.

Problem 9: Find the determinants of the following matrices (Use determinant =
product of pivots and/or row swaps.)

A =

1 1 1
1 2 2
1 2 3



B =


0 5 2 0
1 0 0 0
4 0 0 6
0 3 0 0


Solution (10 points)

We find the determinant of A by reducing and then calculating the determinant
of U : 1 1 1

1 2 2
1 2 3

  

1 1 1
0 1 1
0 1 2


 

1 1 1
0 1 1
0 0 1


The determinant of U is the product of the diagonal entries, so det(A) = det(U) = 1.

We find the determinant of B by doing row swaps. The goal will be to obtain
a lower triangular matrix; we can then find the determinant simply by multiplying
the pivots. Each row swap introduces a factor of −1 which we need to keep track
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of.

det


0 5 2 0
1 0 0 0
4 0 0 6
0 3 0 0

 = (−1) det


1 0 0 0
0 5 2 0
4 0 0 6
0 3 0 0



= (−1)2 det


1 0 0 0
0 3 0 0
4 0 0 6
0 5 2 0



= (−1)3 det


1 0 0 0
0 3 0 0
0 5 2 0
4 0 0 6


So, the determinant of B is −36.

Problem 10: Here’s another Matlab question. You can download the code from
the “Problem Sets” section of the webpage, or just refer to the commands below.
This problem concerns the condition number c which measures the sensitivity to
errors of an equation Ax = b. (The condition number is c = ‖A‖ ‖A−1‖ - see pg. 462
for details.) Generally you lose log c decimal places to roundoff in solving Ax=b.

This problem came to me from a GPS expert who noticed that in this least-
squares problem the condition number increases with more observations. We fit a
function of the form C + Dt + E sin(2πt) to a set of data points that are evenly
spaced over an interval from 0 to tmax. The Matlab code will output the condition
number for different tmax and observation numbers.

a) What is the 3 by 3 matrix A with 3 observations that has such a big condition
number on the first line of the output?

b) What condition numbers do you get if tmax is reduced to .02? Use 3, 4, 5, 10, 100
observations as in the code.

Matlab code:

function fitlinesine

obs=[3,4,5,10,100]; % numbers of observations to use

tmax=[1 1/2 1/4 1/8 1/16]; % maximum values of t to use

for i=1:length(tmax) % for each tmax

9



tm=tmax(i); % current tmax

disp(sprintf(’For the interval [0,%f]:’,tm));

for j=1:length(obs) % for each number of observations

m=obs(j); % current number of observations (will be number of rows)

t=(0:m-1)’*tm/(m-1); % m linearly spaced t’s from 0 to tmax

A=[ones(m,1) t sin(2*pi*t)]; % construct matrix A

c=cond(A); % indicates how ill conditioned system is

disp(sprintf(’%5d observations : cond=%f’,m,c));

end

disp(’ ’);

end

Solution (10 points)
The output is copied at the end; I edited the code slightly so that it would

include the case when tmax = 0.02 (just add this number to the vector tmax).
a) The rows of A are given by (1, t, sin(2πt)) for the points t at which there is

an observation. Here we have split the interval from 0 to 1 into three pieces, so we
obtain three observations and three rows, one at t = 0, t = 1/2, and t = 1. Thus
the matrix is

A =

1 0 0
1 1/2 0
1 1 0


The first column corresponds to the constant term C, the next is the coefficient of
the linear term Dt, and the last is the coefficient of E sin(2πt). Note that this A is
not invertible, which leads to the high condition number.

b) The condition numbers make up the last section of the output. These numbers
are very high, which indicate that it is difficult to weight the straight line coefficient
D and the sin coefficient E. This occurs since we are on a very small interval close
to 0, where the sin function looks almost exactly the same as a straight line (look
at the Taylor series).

For the interval [0,1.000000]:

3 observations : cond=9826207312743670.000000

4 observations : cond=3.686771

5 observations : cond=4.151688

10 observations : cond=5.393387

100 observations : cond=7.058335
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For the interval [0,0.500000]:

3 observations : cond=5.545108

4 observations : cond=6.281994

5 observations : cond=6.742934

10 observations : cond=7.714562

100 observations : cond=8.660958

For the interval [0,0.250000]:

3 observations : cond=51.074911

4 observations : cond=55.064347

5 observations : cond=58.910363

10 observations : cond=69.360809

100 observations : cond=82.322159

For the interval [0,0.125000]:

3 observations : cond=448.483426

4 observations : cond=472.857269

5 observations : cond=501.776602

10 observations : cond=585.291552

100 observations : cond=692.212187

For the interval [0,0.062500]:

3 observations : cond=3578.889606

4 observations : cond=3758.900278

5 observations : cond=3982.988668

10 observations : cond=4637.934580

100 observations : cond=5481.419212

For the interval [0,0.020000]:

3 observations : cond=108867.496487

4 observations : cond=114222.995934

5 observations : cond=120983.822947

10 observations : cond=140810.452216

100 observations : cond=166386.674376
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