
18.06 Problem Set 2
Due Wednesday, 20 February 2008 at 4 pm in 2-106.

Problem 1: a) Do problem 5 from section 2.4 (pg. 65) in the book.
b) Do problem 26 in section 2.4 (pg. 69).

Solution (5+5 points)
a) We have [

1 b
0 1

]n

=

[
1 nb
0 1

]
and [

2 2
0 0

]n

=

[
2n 2n

0 0

]
If you insist on a rigorous proof, you can use induction.

b) 1 0
2 4
2 1

[
3 3 0
1 2 1

]
=

1
2
2

 [
3 3 0

]
+

0
4
1

 [
1 2 1

]

=

3 3 0
6 6 0
6 6 0

 +

0 0 0
4 8 4
1 2 1


=

 3 3 0
10 14 4
7 8 1



Problem 2: Do problem 24 from section 2.4 (pg. 68).

Solution (5+5 points)
In general, if we take an upper triangular matrix with 0s along the diagonal,

some power of it will be 0. The matrices I picked are all instances of this principle.

a) A =

[
0 1
0 0

]
will work.

b) A =

0 1 0
0 0 1
0 0 0

. Do you see the pattern?
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Problem 3: Do problem 7 from section 2.5 (pg. 79).

Solution (3+4+3 points)
a) Suppose we had a solution x. The equation Ax = (1, 0, 0) amounts to the three

equations row 1 · x = 1, row 2 · x = 0, row 3 · x = 0. But we know row 1 + row 2 =
row 3. The three dot products should sum correctly, but they don’t:

(row 1 + row 2) · x = 1 + 0 6= 0 = row 3 · x

Thus, there can’t be a solution x. This shows that A is not invertible.

b) By the same reasoning as above, we must have b1 + b2 = b3 for any allowable
solution. It’s possible that even some of these won’t have solutions; we don’t have
enough information about A to say for sure. For example, the 0 matrix satisfies the
requirement to be A, but 0x = b certainly won’t have any solutions unless all the bi

are 0. We’ll learn a more precise way to discuss this when we talk about rank.

c) After elimination row 3 will become all 0. How do we see this? We know
from part a) that A is not invertible (if it were, every choice of b would have a a
solution). So A can’t have three (non-zero) pivots. Since A has three rows but at
most two pivots, at least one row must be all 0. (Remember that a pivot is the first
non-zero entry in a row; a row without a pivot must not have any non-zero entries
at all.) Because we always eliminate downwards, the row without a pivot will be
the bottom one (it’s possible that the earlier rows also will be all 0).

Another way to do this would be to plug in variables and eliminate by hand.

Problem 4: Define the matrix

A =

 1 2 −4
−1 −1 5
2 7 −3


Using elimination one can calculate that the inverse is

A−1 =

−16 −11 3
7
2

5
2

−1
2

−5
2

−3
2

1
2


a) Suppose that we formed B by switching the top two rows of A. What would

B−1 be?
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b) Now suppose we defined C by adding three times column(3) of A to col-
umn(2). What is C−1?

Solution (5+5 points)
a) We can describe this operation on A by a matrix P . If

P =

0 1 0
1 0 0
0 0 1


then B = PA. Note that P is invertible (it is its own inverse). Thus B−1 = A−1P−1.
Multiplying by P = P−1 on the right switches the first two columns, so

B−1 =

−11 −16 3
5
2

7
2

−1
2

−3
2

−5
2

1
2


Remember, multiplying on the left gives row operations, multiplying on the right
gives column operations.

b) We get C by multiplying A on the right by a matrix, C = AE with

E =

1 0 0
0 1 0
0 3 1


The inverse of E simply replaces 3 by −3. Left multiplication by E−1 adds (−3)
times row 2 to row 3. Thus, C−1 = E−1A−1, or

C−1 =

−16 −11 3
7
2

5
2

−1
2

−13 −9 2



Problem 5: Do problem 23 from section 2.5 (pg. 80).

Solution (10 points)
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2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1

  

2 1 0 1 0 0
0 3

2
1 −1

2
1 0

0 1 2 0 0 1


 

2 1 0 1 0 0
0 3

2
1 −1

2
1 0

0 0 4
3

1
3

−2
3

1


 

2 1 0 1 0 0
0 3

2
0 −3

4
3
2

−3
4

0 0 4
3

1
3

−2
3

1


 

2 0 0 3
2

−1 1
2

0 3
2

0 −3
4

3
2

−3
4

0 0 4
3

1
3

−2
3

1


 

1 0 0 3
4

−1
2

1
4

0 1 0 −1
2

1 −1
2

0 0 1 1
4

−1
2

3
4



Problem 6: Do problem 29 from section 2.5 (pg. 81). As with any True/False
question, be sure to explain your reasoning: give a brief proof if the statement is
true, and give a counterexample if the statement is false.

Solution (3+3+2+2 points)
a) True. After we eliminate, we will still have a 0 in the pivot position of this

particular row, and so A can not be invertible. Alternatively, we can find a system
Ax = b with no solutions by putting a 1 in the position of this particular row.

b) False. A counterexample is the matrix consisting of a 1 in every entry.
c) True. To check if A−1 is invertible, we need a matrix B so that A−1B =

BA−1 = I. Of course, setting B to be A will work.
d) True. (A−1)2 will be the inverse.

Problem 7: Do problem 12 from section 2.6 (pg. 92).

Solution (10 points)
We can reduce A in one step, using

E21 =

[
1 0
−2 1

]
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Then

L = E−1
21 =

[
1 0
2 1

]
Now, D is equal to the diagonal of E21A, and then U is the rest:

D =

[
2 0
0 3

]
U =

[
1 2
0 1

]
We need two steps to reduce B:

E21 =

 1 0 0
−4 1 0
0 0 1


E32 =

1 0 0
0 1 0
0 1 1


Thus

E32E21A =

1 4 0
0 −4 4
0 0 4


Now, our L will be

L = E−1
21 E−1

32 =

1 0 0
4 1 0
0 −1 1


We pick D to be the diagonal of our upper triangular matrix:

D =

1 0 0
0 −4 0
0 0 4


And U is whatever is left:

U = D−1E32E21A =

1 4 0
0 1 −1
0 0 1


The important thing to note is that U is the tranpose of L for symmetric matrices
(that is, U is equal to L flipped over the diagonal).
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Problem 8: Do problem 13 in section 2.6 (pg. 93).

Solution (10 points)
We first reduce the first column. These Ej1 will consist of a −1 in the correct

spot, and the resulting matrix will be

E41E31E21A =


a a a a
0 b − a b − a b − a
0 b − a c − a c − a
0 b − a c − a d − a


The next cancelations will also have a −1 in the appropriate spot, and the resulting
matrix will be

E42E32E41E31E21A =


a a a a
0 b − a b − a b − a
0 0 c − b c − b
0 0 c − b d − b


Similarly the last time:

E43E42E32E41E31E21A =


a a a a
0 b − a b − a b − a
0 0 c − b c − b
0 0 0 d − c


This matrix will be our U , and our L can be computed by taking the inverse of all
the Eij and multiplying. As noted in the text, there is a shortcut way for writing
down L. You simply take the i, j entry of Eij (the “multiplier”), switch the sign,
and put it in the same spot in L. In this case, every Eij has a −1, so

L =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


The conditions on a, b, c, d are a 6= 0, b 6= a, c 6= b, d 6= c. Note that if we factored
this into LDU , we would get L and U are transposes just as in the last problem.

Problem 9: Do problem 28 in section 2.6 (pg. 95).

Solution (10 points)
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We reduce A. The first matrix is E21 with a −3 multiplier, and as a result we
get

E21A =

1 2 0
0 c − 6 1
0 1 1


Now, if c − 6 = 0, we will need a row swap here, so A = LU is impossible. Further-
more, in this case after a row swap we end up with 3 non-zero pivots. So this is one
example answering the question - are there any others?

It’s clear that if c 6= 6, we won’t need to do any row swaps (we’re basically done
reducing already), and so we will get A = LU . Of course, sometimes U will not
have 3 pivots (when c = 7), but that’s not what the question is asking for. LU
factorizations will not exist only when we need a row swap.

Problem 10: In this problem we will use Matlab to do LU factorizations. Don’t
forget to include your code! Define the matrix

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


The command [L,U]=lu(A) will decompose A into L and U . We can further
decompose U by using the fact that A is symmetric, so that U = DL′ (the ’ denotes
transpose in Matlab). What are L, D, U? What will the pattern be for larger
matrices of the same form?

Now, factor B = [1,2;2,5] into B = C ′C by using C = chol(B) (here
chol stands for Cholesky). Try using the command [L,U]=lu(B). What hap-
pens and why? We’ll need to include a permutation matrix P via the command
[L,U,P]=lu(B). Find L, U, P and check that PB = LU .

Solution (10 points)
My code is below. The pattern in the first part appears to be consecutive ratios

2
1
, 3

2
, 4

3
, . . . along the diagonal of D, and their negative inverses inside of L.

Something strange happens when we take the LU decomposition of B: initially
the L that we get is not lower-triangular. Even though B does have a legitimate
LU -decomposition, Matlab gave us something different. This is because Matlab
always rearranges the rows to make pivots as large as possible. When we start out
with A = [1, 2; 2, 5], it sees that we can switch the two rows to make the first pivot
bigger, and it does that first. This is a good computational technique, but a little
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confusing if you don’t expect it. That is why L is not lower triangular; it includes
the row-switch data as well. Including a P will give us a lower triangular matrix,
but it’s still not the one we would have expected.

A = [2,-1,0,0;-1,2,-1,0;0,-1,2,-1;0,0,-1,2]

A =

2 -1 0 0

-1 2 -1 0

0 -1 2 -1

0 0 -1 2

[L,U]=lu(A)

L =

1.0000 0 0 0

-0.5000 1.0000 0 0

0 -0.6667 1.0000 0

0 0 -0.7500 1.0000

U =

2.0000 -1.0000 0 0

0 1.5000 -1.0000 0

0 0 1.3333 -1.0000

0 0 0 1.2500

D = U*(L’)^(-1)

D =

2.0000 0 0 0

0 1.5000 -0.0000 -0.0000

0 0 1.3333 -0.0000

0 0 0 1.2500

8



L*D*L’

ans =

2.0000 -1.0000 0 0

-1.0000 2.0000 -1.0000 -0.0000

0 -1.0000 2.0000 -1.0000

0 0 -1.0000 2.0000

B = [1,2;2,5]

B =

1 2

2 5

C = chol(B)

C =

1 2

0 1

C’*C

ans =

1 2

2 5

[L,U]=lu(B)

L =

0.5000 1.0000

1.0000 0
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U =

2.0000 5.0000

0 -0.5000

[L,U,P]=lu(B)

L =

1.0000 0

0.5000 1.0000

U =

2.0000 5.0000

0 -0.5000

P =

0 1

1 0

P*B

ans =

2 5

1 2

L*U

ans =

2 5

1 2

diary off
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