	Grading
Your PRINTED name is:	1
	2
	3

Please circle your recitation:

1)	M 2	2-131	A. Kasimov	2-339	3-1715	kasimov
2)	M 3	2-131	A. Kasimov	2-339	3-1715	kasimov
3)	M 3	2-132	R. Lehman	2-251	3-7566	rclehman
4)	T 10	2-132	F. Liu	2-333	3-7826	fuliu
5)	T 11	2-132	P. Shor	2-369	3-4362	shor
6)	T 12	2-132	P. Shor	2-369	3-4362	shor
7)	T 1	2-131	F. Liu	2-333	3-7826	fuliu
8)	T 1	2-132	A. Osorno	2-229	3-1589	aosorno
9)	T 2	2-132	A. Osorno	2-229	3-1589	aosorno

1 (30 pts.) Let

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 2 & 4 \end{array} \right]$$

- (a) By eliminating, prove that the column space consists of those vectors $(x,y,z)^{\rm T} \text{ with } 2x-y=0.$
- (b) By eliminating, prove that the row space consists of those vectors $(x, y, z)^{T}$ with y + z = 2x.

this page intentionally blank

2 (40 pts.) For each of the eight cases below, exhibit a 3×3 matrix A with rank r and the specified condition or argue convincingly that it is impossible.

(a)
$$r = 0$$
, $col(A) = row(A)$

(e)
$$r = 0$$
, $col(A) \neq row(A)$

(b)
$$r = 1$$
, $col(A) = row(A)$

(f)
$$r = 1$$
, $col(A) \neq row(A)$

(c)
$$r = 2$$
, $col(A) = row(A)$

(g)
$$r = 2$$
, $col(A) \neq row(A)$

(d)
$$r = 3$$
, $col(A) = row(A)$

(h)
$$r = 3$$
, $col(A) \neq row(A)$

this page intentionally blank

3 (30 pts.) Let

$$A = \begin{bmatrix} 1 & a & 0 & d & 0 & g \\ 0 & b & 1 & e & 0 & h \\ 0 & c & 0 & f & 1 & i \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix}$$

- (a) Find the complete solution to Ax = v, if s = 1.
- (b) Find the complete solution to Ax = v, if s = 0.

(Hint: Best if you don't work too hard!)

this page intentionally blank