Your name is:

Please circle your recitation:

1)	M2	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
2)	М3	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
3)	М3	2-132	A. Oblomkov	2-092	3-6228	oblomkov
4)	T11	2-132	A. Oblomkov	2-092	3-6228	oblomkov
5)	T12	2-132	I. Pak	2-390	3-4390	pak
6)	T1	2-131	B. Santoro	2-085	2-1192	bsantoro
7)	T1	2-132	I. Pak	2-390	3-4390	pak
8)	T2	2-132	B. Santoro	2-085	2-1192	bsantoro
9)	T2	2-131	J. Santos	2-180	3-4350	jsantos

Problems 1–8 are 12 points each; Problem 9 is 4 points. Thank you for taking 18.06!

- Suppose A is an m by n matrix of rank r. You multiply it by any m by n invertible matrix E to get B = EA.
 - (a) Circle if true and cross out if false (three parts):

$$A \text{ and } B \text{ have the} \left\{ \begin{array}{l} \textit{same null space} \\ \textit{same column space} \\ \textit{same bases for row space}. \end{array} \right.$$

(b) Suppose the right E gives the row-reduced echelon matrix

$$EA = R = \begin{bmatrix} 1 & 4 & 0 & 6 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (1) Find a basis for the nullspace of A.
- (2) True statement: The nullspace of a matrix is a vector space. What does it mean for a set of vectors to be a vector space?
- (c) What is the nullspace of a 5 by 4 matrix with linearly independent columns? What is the nullspace of a 4 by 5 matrix with linearly independent columns?

2 This matrix A has column 1 + column 2 = column 3:

$$A = \left[\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{array} \right]$$

- (a) Describe the column space C(A) in two ways:
 - (1) Give a basis for C(A).
 - (2) Find all vectors that are perpendicular to C(A).
- (b) The projection matrix P onto the column space does not come from the usual formula $A(A^{T}A)^{-1}A^{T}$. Why not—what goes wrong with this formula?
- (c) Find that matrix P for projection onto the column space of A.

- Suppose P is the 3 by 3 projection matrix (so $P = P^{T} = P^{2}$) onto the plane 2x + 2y z = 0. You do not have to compute this matrix P but you can if you want.
 - (a) What is the rank of P? What are its three eigenvalues? What is its column space?
 - (b) Is P diagonalizable—why or why not? Find a nonzero vector in its nullspace.
 - (c) If b is any unit vector in \mathbb{R}^3 , find the number q. Explain your thinking in 1 sentence and 1 equation:

$$q = ||Pb||^2 + ||b - Pb||^2.$$

4 (a) If $a \neq c$, find the eigenvalue matrix Λ and eigenvector matrix S in

$$A = \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] = S\Lambda S^{-1} \,.$$

(b) Find the four entries in the matrix A^{1000} .

- 5 (a) Suppose $A^{T}Ax = 0$. This tells us that Ax is in the _____ space of A^{T} . Always Ax is in the _____ space of A. Why can you conclude that Ax = 0?
 - (b) Supposing again that $A^{T}Ax = 0$ we immediately get $x^{T}A^{T}Ax = 0$. From this, show directly that Ax = 0. Every matrix $A^{T}A$ is symmetric and _______.
 - (c) The rectangular m by n matrix A always has the same nullspace as the square matrix $A^{T}A$ (this is proved above). Now deduce that A and $A^{T}A$ have the same rank.

- 6 Suppose A = ones(3,5) and $A^{T} = ones(5,3)$ are the 3 by 5 and 5 by 3 matrices of all 1's.
 - (a) Find the trace of AA^{T} and the trace of $A^{T}A$.
 - (b) Find the eigenvalues of AA^{T} and the eigenvalues of $A^{T}A$.
 - (c) What is the matrix Σ in the singular value decomposition $A = U\Sigma V^{\mathrm{T}}$?

7 (a) By elimination or otherwise, find the determinant of A:

$$A = \left[\begin{array}{cccc} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ v_1 & v_2 & v_3 & 0 \end{array} \right]$$

- (b) If that zero in the lower right corner of A changes to 100, what is the change (if any) in the determinant of A? (You can consider its cofactors)
- (c) If (u_1, u_2, u_3) is the same as (v_1, v_2, v_3) so A is symmetric, decide if A is or is not positive definite—and why?
- (d) Show that this block matrix M is singular for any u and v in \mathbf{R}^n , by finding a vector in its nullspace:

$$M = \left[\begin{array}{cc} I & u \\ v^{\mathrm{T}} & v^{\mathrm{T}} u \end{array} \right].$$

- 8 Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbf{R}^4 (not \mathbf{R}^3 !).
 - (a) What is the length of the vector $v = 2q_1 3q_2 + 2q_3$?
 - (b) What four vectors does Gram-Schmidt produce when it orthonormalizes the vectors q_1, q_2, q_3, u ?
 - (c) If u in part (b) is the vector v in part (a), why does Gram-Schmidt break down? Find a nonzero vector in the nullspace of the 4 by 4 matrix

$$A = \left[\begin{array}{ccc} q_1 & q_2 & q_3 & v \end{array} \right] \quad \text{with columns} \ q_1, q_2, q_3, v \ .$$

9 (4 points) PROVE (give a clear reason): If A is a symmetric invertible matrix then A^{-1} is also symmetric.