Your name is: Please circle your recitation: 1) M 22–131 P. Clifford 2) M 3 2–131 P. Clifford 3) T 11 2-132 T. de Piro 4) T 12 2-132T. de Piro 5) T 1 2–131 T. Bohman 6)T 1 2-132T. Pietraho 2–132 T. Pietraho T 2 T. Bohman T 2 8) 2-131 Note: Make sure your exam has 4 problems. | Problem | $egin{array}{c} \mathbf{Points} \\ \mathbf{possible} \end{array}$ | |---------|---| | 1 | 30 | | 2 | 16 | | 3 | 30 | | 4 | 24 | | Total | 100 | Note: Some problems are worth more than others. ## 1 (30 pts) Let $$A = \left[egin{array}{ccc} 1 & 1 \ 2 & -1 \ -2 & 4 \end{array} ight].$$ - (a) Find orthonormal vectors q_1 , q_2 , and q_3 so that q_1 and q_2 form a basis for the column space of A. - (b) Which of the four fundamental subspaces contains q_3 ? - (c) Find the projection matrix P projecting onto the left nullspace (not the column space!) of A. - (d) Find the least squares solution to Ax = (1, 2, 7). 2 (16 pts) Compute the determinant of $$A = \left[egin{array}{cccc} 2 & -1 & 0 & 0 \ -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 \ 0 & 0 & -1 & 2 \end{array} ight].$$ - 3 (30 pts) Consider this sequence: $G_0 = 0$, $G_1 = 1$ and $G_{k+2} = (G_k + G_{k+1})/2$. (So G_{k+2} is the average of the previous two numbers G_k and G_{k+1} .) This problem will find the limit of G_k as $k \to \infty$. - (a) Find a matrix A which satisfies $$\left[\begin{array}{c}G_{k+2}\\G_{k+1}\end{array}\right] = A\left[\begin{array}{c}G_{k+1}\\G_{k}\end{array}\right].$$ - (b) Find the eigenvalues and eigenvectors of A. - (c) Write $A^k = S\Lambda^k S^{-1}$, where Λ is a diagonal matrix. You do **not** need to multiply this out to get a single matrix. - (d) Find the limit as $k \to \infty$ of the numbers G_k . 4 (24 pts) Suppose A is a 3×3 matrix with eigenvalues 0, 1, and 2. Find the following: - (a) the rank of A. - (b) the determinant of $A^{T}A$. - (c) the determinant of A + I. - (d) the eigenvalues of $(A+I)^{-1}$.