1 (36 pts.) The differential equation is

$$\frac{du}{dt} = Au \quad \text{with} \quad A = \begin{bmatrix} -2 & 3 \\ 2 & -3 \end{bmatrix} \quad \text{and} \quad u(0) = \begin{bmatrix} 5 \\ 0 \end{bmatrix}.$$

(a) Find the eigenvalues and eigenvectors and diagonalize to $A = S\Lambda S^{-1}$.

A is not invertible, hence one eigenvalue is 0.

Tr(A) = -5, so the other eigenvalue of A must be -5.

An eigenvector of A with eigenvalue 0 is (3, 2).

An eigenvector of A with eigenvalue -5 is (1, -1).

$$A = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 1/5 & 1/5 \\ 2/5 & -3/5 \end{bmatrix}.$$

(b) Solve for u(t) starting from the given u(0).

General solution is
$$u(t) = c_1 \begin{bmatrix} 3 \\ 2 \end{bmatrix} + c_2 e^{-5t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

The condition
$$u(0) = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
 is satisfied when $c_1 = 1, c_2 = 2$.

(c) Compute the matrix e^{At} using S and Λ .

$$A = S\Lambda S^{-1} \Rightarrow e^{At} = Se^{\Lambda t}S^{-1}$$
. So

$$e^{At} = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{-5} \end{bmatrix} \begin{bmatrix} 1/5 & 1/5 \\ 2/5 & -3/5 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2e^{-5t} + 3 & -3e^{-5t} + 3 \\ -2e^{-5t} + 2 & 3e^{-5t} + 2 \end{bmatrix}$$

(d) As t approaches infinity, find the limits of u(t) and e^{At} .

As
$$t \to \infty$$
, $e^{-5t} \to 0$, $u(t) \to \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and $e^{At} \to \frac{1}{5} \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$

2 (40 pts.) The matrix A has 3's on the diagonal and 2's everywhere else:

$$A = \left[\begin{array}{rrr} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array} \right]$$

(a) Decide if A is positive definite. What is the minimum value of $x^T A x$ for all vectors x in \mathbb{R}^3 ?

A is positive definite since:

- 1. A is symmetric,
- 2. The upper left determinants are 3, 5, 7.

A is positive definite $\Rightarrow x^T A x \ge 0$.

When x = 0, $x^T A x = 0$. So 0 is the minimum.

(b) All entries of B = A - I are 2's. From its rank find all the eigenvalues of B and then all the eigenvalues of A.

All three columns of B are the same

- $\Rightarrow Rank(B) = 1$
- $\Rightarrow N(B)$ has dimension 2
- \Rightarrow B has two independent eigenvectors with eigenvalue 0
- $\Rightarrow \lambda_1 = \lambda_2 = 0$, and $\lambda_3 = tr(B) = 6$.

The eigenvalues of A are 1, 1, 7.

(c) Write down any one specific symmetric matrix C that is similar to A. Write down if possible any one nonsymmetric matrix N that is similar to A. Write down a matrix J with the same eigenvalues as A that is not similar to A. (Give the 9 numbers in C, N, J.)

$$C = \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \qquad N = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 7 \end{bmatrix}, \qquad J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$$

Explanation: A is symmetric (so you could have let C = A) and hence can be diagonalized to Λ . Consider

$$D = \left[\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 7 \end{array} \right]$$

D has eigenvalues 1, 1, 7.

If D is similar to A, then D can also be diagonalized to Λ and hence must have two eigenvectors with eigenvalue 1. This is possible iff x = 0. Our choice of C is obtained by letting y = z = 0. Our choice of N is obtained by letting y = 0, z = 1.

When $x \neq 0$, D is not similar to A. Our choice of J is obtained by letting x = 1.

Note: There are choices for C, N, and J which are not upper triangular.

(d) For the 6 by 6 matrix A_6 with 3's on the diagonal and 2's everywhere else use the same method (with $A_6 - I$) to find the six eigenvalues. If you make a good choice of eigenvectors, in what form can you factor A?

The matrix $B_6 = A_6 - I$ has rank 1, so it has 5 independent eigenvectors with eigenvalue 0. It follows that

the eigenvalues of B_6 are 0, 0, 0, 0, 0, 12 = tr(B) and the eigenvalues of A_6 are 1, 1, 1, 1, 13.

We already know that $A=S\Lambda S^{-1}$ for some S whose columns are independent eigenvectors of A. But A is symmetric, so we can choose its eigenvectors to be orthonormal and have $A=Q\Lambda Q^{-1}$, where Q is orthogonal.

3 (24 pts.) Suppose $A = U\Sigma V^T = (\text{orthogonal } 2 \times 2) \text{ (diagonal) (orthogonal } 3 \times 3)$

$$U = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

(a) What are the eigenvalues and eigenvectors of A^TA ?

$$A^TA = (U\Sigma V^T)^T(U\Sigma V^T) = V\Sigma^T\Sigma V^T.$$

$$\Sigma^T \Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The eigenvalues of $A^T A$ are 16, 1, 0.

 v_1 is an eigenvector of $A^T A$ with eigenvalue 16.

 v_2 is an eigenvector of A^TA with eigenvalue 1.

 v_3 is an eigenvector of $A^T A$ with eigenvalue 0.

- (b) What is the nullspace of A? (Describe the whole nullspace.) The nullspace of A is the linear span of v_3 .
- (c) What is the row space of A? (Describe the whole row space.) The row space of A is the linear span of v_1 , v_2 .