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Show all your work on these pages.
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1. Let A =

 4 1

−1 4

.

1a. Find the eigenvalues of A.[10]

1b. Find an eigenvector for each eigenvalue of A.[10]



1c. Compute xH1x2.[10]
(Note: x1 and x2 are the complex eigenvectors that you obtained in 1b.)



2. Let A =

 −2 1

0 0

.

2a. Find an invertible matrix S that makes S−1AS a diagonal matrix.[12]



2b. For the differential equation du
dt

= Au, give a nonzero initial vector u(0) such[10]

that u(t)→

 0

0

 as t→∞.



3. Fill in the matrix A =

 0.5 a12

a21 a22

 so that A is a positive Markov matrix with the[16]

steady state vector x1 =

 0.25

0.75

.
(Recall that the limit of Aku0 is always a multiple of x1.)



4. Each independent question refers to the matrix A =

 4 1

d −4

.
In each case, find the value of d that makes the statement true (and show your work!).

4a. Give a value for d such that

 5

1

 is an eigenvector of A.[10]

4b. Give a value for d such that 2 is one of the eigenvalues of A.[10]



4c. Give a value for d such that A is a nondiagonalizable matrix.[12]

Recall that A =

 4 1

d −4

.


