
MIT 18.06 Final Exam Solutions,
Fall 2022, Johnson

Problem 1 [5+10 points]:

Ax = b has solutions x1 =

 1
2
3

 and x2 =

 4
5
6

, and possibly other

solutions, for some (real) matrix A and right-hand side b.

(a) A is an m × n matrix with rank r. Give as much true information
as possible about m,n, r. (For example, “m = 16, r = 0, n ≤ 12” is a
possible, but incorrect, answer.)

(b) Give another solution x3 = (different from x1 and x2) for the
same equation Ax = b. You can do this because you know a nonzero
vector in the space of A.

Solution:
(a) We must have n = 3 because the solutions have 3 components. Since

the solutions are not unique, A cannot have full column rank and so
0 ≤ r ≤ 2 . We must have m ≥ r rows (which is true for any matrix).

(b) The difference x2−x1 =

 3
3
3

 between two solutions (or any multiple

thereof) must be a vector in the null space of A. So, we can find more
solutions simply by adding any multiple of this to x1 or x2, for example

x2 + (x2 − x1) =

 7
8
9

 is a solution, or in fact any vector of the form

x1 +
α
3 (x2 − x1) =

 α+ 1
α+ 2
α+ 3

 for any scalar α (this is the “complete”

solution to Ax = b, though you weren’t required to write this explicitly).
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Problem 2 [10+5 points]:
Robert “Bobby Boy” Boyle (way back in 1662) measured a sequence of m data
points (p1, v1), (p2, v2), . . . , (pm, vm) relating the pressure p of a gas to its volume
v. Suppose that he wanted to fit his data to a model of the form

V (P ) = α+
β

P

and solve for the unknown coefficients α and β that minimize the sum-of-squares
error

∑
k[vk − V (pk)]

2 between the model and the measured data.

(a) Write down a × system of linear equations (matrix?)(unknowns?) =
(right-hand side?) that Bobby could solve to find these best-fit coefficients
α and β. You can leave the matrix and right-hand-side as products of
terms involving other matrices and/or vectors, but clearly describe how
each term is constructed from the data (p1, v1), (p2, v2), . . . , (pm, vm).

(b) Using these best-fit α and β values, the vector δ =


v1 − V (p1)
v2 − V (p2)

...
vm − V (pm)

 of

discrepancies between the model and the data is an orthogonal projection
of the vector onto the space of the matrix .

Solution:
(a) There are 2 unknowns, so we will have a 2× 2 system of equations given

by the normal equations for our least-square problem:

ATA

(
α
β

)
︸ ︷︷ ︸

x̂

= AT b

where

A =


1 1

p1

1 1
p2

...
...

1 1
pm


︸ ︷︷ ︸

m×2

, b =


v1
v2
...
vm



since we want to minimize
∑
k[vk − V (pk)]

2 = ‖b−Ax‖2.

(b) The vector δ is precisely the error (“residual”) δ = b−Ax̂. Recall that the
least-square solution x̂ is chosen so that p = Ax̂ = Pb is the projection of
b onto C(A), and δ = b−Ax̂ = b− p = (I − P )b is the projection of b
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onto N(AT ) ,the left nullspace of A .

(If you’ve forgotten this, it’s always useful to draw a sketch of least-square
fitting to remind yourself that the b − Ax is minimized when Ax is the
orthogonal projection of b onto C(A).)
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Problem 3 [5+10 points]:
Consider the system of differential equations

dx

dt
=

(
−1 2

a

)
x

with initial condition x(0) =
(

3
1

)
.

(a) For what value(s) of a will the solution x(t) approach a nonzero constant
vector at large t?

(b) Using the value of a from the previous part, write down the exact solution
x(t) (at all times, not just for large t).

Solution:
(a) To make the ODE solution x(t) = eAt go to a nonzero constant, we want

one eλt term to be constant (i.e. λ = 0) and the other eλt term to be

decaying (i.e. Re(λ) < 0). Since A =

(
−1 2

a

)
is an upper-triangular,

det(A− λI) is just the product of the diagonals (−1− λ)(a− λ) and the
eigenvalues are λ1 = −1 and λ2 = a. The first eigenvalue gives decaying
solutions, so we need a = 0 to get a constant solution from the other
term.

Technically, we also need to check that x(0) has a nonzero coefficient
of the λ2 = 0 eigenvector, but we will verify this in part (b).

(b) To obtain x(t), we need to (1) expand x(0) in the basis of eigenvectors and
(2) multiply each term by eλt. That is, we are looking for the solution:

x(t) = eAtx(0) =
(
x1 x2

)︸ ︷︷ ︸
X

(
e−t

e0t

)
︸ ︷︷ ︸

eΛt

X−1x(0)︸ ︷︷ ︸
c

= c1e
−tx1 + c2x2,

which corresponds to expanding a solution in the basis of the eigenvectors
x1, x2, finding the coefficients c from x(0), and multiplying each term by
the corresponding eλt.

First, we need to find the eigenvectors, but this a straightforward ex-
ercise in computing nullspaces (which in this simple case can be done by
inspection):

(A−���
−1

λ1I)x1 =

(
0 2

1

)
x1 = ~0 =⇒ x1 =

(
1
0

)
,
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(A−���
0

λ2I)x2 =

(
−1 2

0

)
x2 = ~0 =⇒ x2 =

(
2
1

)
.

Now, to expand x(0) this basis, we write

x(0) =

(
3
1

)
= c1

(
1
0

)
︸ ︷︷ ︸

x1

+c2

(
2
1

)
︸ ︷︷ ︸

x2

=

(
1 2

1

)
︸ ︷︷ ︸

X

(
c1
c2

)
︸ ︷︷ ︸

c

=⇒ c =

(
1
1

)
,

which is solvable by inspection, or by using the fact that X is upper-
triangular so we can do backsubstitution (with no elimination steps). (If
we wrote the eigenvalues in the opposite order we would have gotten a
lower-triangular X, from which we could do forward-substitution.) Hence

x(t) = c1e
λ1tx1 + c2e

λ2tx2 = e−t
(

1
0

)
+ e0t

(
2
1

)
=

(
2 + e−t

1

)
,

which clearly approaches the nonzero constant vector x2 as desired in part
(a), since c2 6= 0.
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Problem 4 [4+4+4+4+4 points]:
The following short-answer questions are answered independently (and refer to
unrelated matrices A for each part), requiring little or no computation:

(a) Any solution x of Ax = b is a sum of a vector in the space of A
and a vector in the in the space of A.

(b) If Ax = b is solvable for any b, then it might be a (circle one) 10× 3 or
3× 10 matrix with rank r = . If Ax = b has a unique solution x
for some b then it might be a (circle one) 10 × 3 or 3 × 10 matrix with
rank r = .

(c) Relate the four fundamental subspaces of ATA to the four fundamental
subspaces of a real matrix A: nullspace of ATA = space of A,
left nullspace of ATA = space of A, column space of ATA =

space of A, row space of ATA = space of A.

(d) Suppose we solve ATAx̂ = AT b for x̂ given some real A. Then, the orthog-
onal projection of b into C(A) is the vector and the projection
of b onto N(AT ) is the vector . (Give formulas in terms of A, b, x̂
involving no matrix inverses.)

(e) Which of the following matrices cannot be singular for any real square
matrix A (circle all answers): ATA, A2+I, (A+AT )2+I, e−A, A+10100I,
3ATA+ 4I.

Solution:

(a) The row space C(AH) and the null space N(A) , since together these
give the whole space Rn of possible inputs of any m× n matrix A.

(b) If it’s solvable for any b, then A must be a “wide” matrix with full row
rank, for example a 3× 10 matrix with rank r = 3 . If the solutions are
unique, then A must be a “tall” matrix with full column rank, for example
a 10× 3 matrix with rank r = 3 .

(c) We showed in class that the nullspace of ATA matches that of A and
the column space matches that of AT . Furthermore, since ATA is real-
symmetric, i.e. (ATA)T = ATA, the same things hold true of the left

nullspace and the row space. So the nullspace is N(ATA) = N(A) , the

left nullspace is N((ATA)T ) = N(A) , the column space is C(ATA) = C(AT ) ,

and the row space is C((ATA)T ) = C(AT ) .

(d) The orthogonal projection of b onto C(A) is Ax̂ and the projection of
b onto N(AT ) is b−Ax̂ . This is how we derived the normal equations
ATAx̂ = AT b in the first place!
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(e) ATA can be singular since it is only semidefinite (e.g. suppose A = 0).
A2 + I can be singular if A has an eigenvalue of ±i (possible for real A!).

(A+AT )2 + I cannot be singular since A+AT is real-symmetric with
real eigenvalues, so the eigenvalues of (A + AT )2 + I are (real)2 + 1 > 0.

e−A cannot be singular since e−λ 6= 0 for any eigenvalue λ of A. A +

10100I can be singular if A has an eigenvalue λ = −(10100). 3ATA+ 4I

cannot be singular since ATA is semidefinite with eigenvalues ≥ 0 , so
3ATA+ 4I has eigenvalues of the form 3(something ≥ 0) + 4 > 0.
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Problem 5 [10+5+5 points]:
Suppose you have a matrix A = C−1B where

B =

 1
−1 2
2 1 1

 , C =

 2 4
2 2

4 2 2

 .

The following parts can be answered independently.

(a) Compute the first column of A−1.

(b) Compute the trace of the matrix A−1B. (Little calculation is required
because A−1B has the same trace, and the same eigenvalues, as ,
since the two matrices are !)

(c) One of the eigenvalues of C is λ1 = 2. A corresponding eigenvector is
x1 = .

Solution:
(a) We can do this without computing A−1 explicitly (which is almost always

a mistake). We just need to compute

x = A−1

 1
0
0

 =
(
C−1B

)−1 1
0
0

 = B−1 C

 1
0
0


︸ ︷︷ ︸

b︸ ︷︷ ︸
triangular solve Bx=b

.

The first step is b = C

 1
0
0

 =

 2
0
4

 , just the first column of c. The

second step is to compute x = B−1b by solving Bx = b for x, but since B
is lower-triangular we can do this easily by forward-substitution: 1
−1 2
2 1 1


︸ ︷︷ ︸

B

 x1
x2
x3


︸ ︷︷ ︸

x

=

 2
0
4


︸ ︷︷ ︸

c

=⇒
x1 = 2

−x1 + 2x2 = 0 =⇒ x2 = 1
2x1 + x2 + x3 = 4 =⇒ x3 = −1

=⇒ x =

 2
1
−1

 .

Of course, there are much more laborious ways to solve this problem by
explicitly inverting and multiplying a bunch of matrices.

(b) The key thing to realize is that the matrix A−1B = B−1CB is similar
to the matrix C , so its trace (and determinant, and eigenvalues) match
those of C. By inspection, then, trace(A−1B) = trace(C) = 2+2+2 = 6 .
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Another way of seeing this is to use the “cyclic property” of the trace:
trace(A−1B) = trace( BA−1︸ ︷︷ ︸

=BB−1C=C

). It’s not really correct terminology to

say that A−1B and BA−1 are “cyclic”, however—a “cyclic matrix” refers
to something else entirely. But it is true that given a product of matri-
ces, you can take a cyclic permutation of the product, and get the same
eigenvalues as well as the same trace: (More precisely: XY and Y X have
identical eigenvalues for any square X and Y , and the nonzero eigenvalues
are the same even for non-square X and Y ! But we often don’t cover this
fact in 18.06.)

Actually calculating A−1B is a lot more work (even for a computer,
though for matrices this tiny it hardly matters) and very error-prone (by
hand), but if you managed to do it all correctly you would get A−1 = 2 0 4

1 1 3
−1 1 −9

 and A−1B =

 10 4 4
6 5 3
−20 −7 −9

 , which of course has the

same trace 10 + 5− 9 = 6.

(c) We just need a basis for N(C − 2I):

(C − 2I)x = ~0 =

 0 4
0 2

4 2 0

 x1
x2
x3

 ,

but this can be done either by inspection or simply working top-to-bottom.
The first two rows immediately give x3 = 0 and the last row gives 4x1 +
2x2 = 0 =⇒ x2 = −2x1 . So, for example, we could pick x1 = 1 and get
an eigenvector

x =

 1
−2
0


or any nonzero scalar multiple thereof.
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Problem 6 [4+4+4+4+4 points]:
The matrix A has eigenvalues λ1 = 1, λ2 = −2, and λ3 = 0, with correspond-

ing eigenvectors x1 =

 1
0
1

 , x2 =

 1
1
1

 , x3 =

 1
0
2

 . Consider the

recurrence
Ayn+1 = yn − 3yn+1,

starting with some initial vector y0.

(a) Give an exact formula for yn = in terms of A, I, y0, n. (For
example, yn = (enA + 7I)y0 is a possible but incorrect answer.)

(b) For a typical initial vector y0 (e.g. one chosen at random with randn(3) in
Julia), you should expect yn for large n to be approximately parallel to the
vector and growing/decaying/oscillating/nearly constant
with n (circle one).

(c) Give an example of an initial vector y0 = for which yn is decay-
ing towards zero with n, and for this y0 give an exact numeric formula
(in terms of n) for yn = . (There are many possible answers,
but not much calculation should be needed.) Your answer should have
no matrices or unknowns, only vectors of numbers or simple arithmetic
expressions like 2n or en or 1

n2 .

(d) The matrix A can/must/cannot be Hermitian (circle one). Briefly
justify your answer.

(e) For y0 =

 0
−4
1

 , give a good approximate formula for y100 =

(numeric vector, no unknowns or matrices).

Solution:
(a) Ayn+1 = yn − 3yn+1 =⇒ Ayn+1 + 3yn+1 = (A + 3I)yn+1 = yn =⇒

yn+1 = (A+3I)−1yn. Note that A+3I must be invertible because A has
no eigenvalues of −3. Starting with y0, we then get y1 = (A + 3I)−1y0,
followed by y2 = (A+ 3I)−1y1 = (A+ 3I)−2y0, and so on, so

yn = (A+ 3I)−ny0

for any n.

(b) Since A has eigenvalues 1,−2, 0, it follows that (A+3I)−n has eigenvalues
(1 + 3)−n, (−2 + 3)−n, (0 + 3)−n = 1

4n , 1
n, 1

3n . Two of these are decaying
exponentially with n, so for large n we should expect yn to be dominated
by the 1n term, which is parallel to x2 and is nearly constant with n.
(The only exception would be if the x2 coefficient is exactly zero, which is
very unlikely for a random initial vector.)
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(c) To get a decaying solution, we just need y0 to be a nonzero vector in
the span of x1 and x3, so that the x2 coefficient is zero. For example,

we could simply pick y0 = x1 and get yn =
1

4n
x1 . More generally, we

could pick y0 = c1x1+ c3x3 for any coefficients c1, c3 in which case we will
get yn = c1

4nx1 +
c3
3nx3.

(d) A cannot be Hermitian because the given eigenvectors are not orthog-
onal for distinct eigenvalues.

(e) We just need to write this initial vector in the basis of eigenvectors y0 =
c1x1 + c2x2 + c3x3 and then multiply the terms by 1

4n , 1
n, 1

3n respectively
to get yn. Unfortunately, since the eigenvectors are not orthogonal, we
cannot simply find the coefficients by taking dot products (which would
be nice because we only need the x2 coefficient at the end), but have to
solve a linear system for the coefficients: 1 1 1

0 1 0
1 1 2


︸ ︷︷ ︸

X=
(
x1 x2 x3

)

 c1
c2
c3


︸ ︷︷ ︸

c

=

 0
−4
1


︸ ︷︷ ︸

y0

.

Proceeding by Gaussian elimination, we only need to do a single elimi-
nation step (subtract the first row of X from the third row) to get it in
upper-triangular form, and the same thing to the right-hand side, yielding: 1 1 1

1 0

1


︸ ︷︷ ︸

X U

 c1
c2
c3


︸ ︷︷ ︸

c

=

 0
−4
1


︸ ︷︷ ︸
y0 b

=⇒
· · ·

c2 = −4
· · ·

.

We don’t even need to solve for c3 and c1 in this particular case, because
U is so nice, but if we did we would easily find c3 = 1 and c1 = 3. So,

y100 =
c1
4100

x1 + c2x2 +
c3
3100

x3 ≈ c2x2 = −4x2 =

 −4−4
−4

 ,

since the x1 and x2 terms are negligible.
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Problem 7 [5+8+5 points]:
The real Hermitian (real-symmetric) matrix A has an eigenvalue λ1 = − 1

2 (clari-
fication: with multiplicity 1, not a repeated root) and a corresponding eigenvector

x1 =


1
2
−1
0
1

, and its other eigenvalues are all equal to 1.

(a) Give one example of an eigenvector of A for λ2 = 1.

(b) The orthogonal projection of b =


3
1
0
1
2

 onto the span S of x1 is

and the projection of b onto the orthogonal complement S⊥ is .

(c) With the help of the previous part, an exact formula for An


3
1
0
1
2

 =

(in terms of n and explicit numerical vectors, no matrices or
unknowns).

Solution:
(a) The key thing is to realize that we just need any nonzero vector ⊥ x1, for

example


0
0
0
1
0

 works.

Since A is Hermitian, any eigenvector for eigenvalues 6= λ1 must be ⊥
x1, i.e. in the orthogonal complement of the span of x1, which is 4-
dimensional. Since all of the other eigenvalues are 1, the eigenvalue of
1 must have multiplicity 4 (there are 5 eigenvalues in total, counting re-
peated roots) and there must be 4 eigenvectors for that eigenvalue —
together with x1, they must form a basis for R5 (since A is Hermitian
therefore diagonalizable). So, the eigenvectors for λ = 1 must be the
whole 4-dimensional subspace ⊥ x1.
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(b) The projection onto S is

p =
x1x

T
1

xT1 x1
b = x1 �

��>
7

xT1 b

�
��*

7

xT1 x1

= x1 =


1
2
−1
0
1

 .

Note that, as usual it would be equivalent but much more work to first

compute the 5×5 rank-1 projection matrix P =
x1x

T
1

xT
1 x1

= 1
7


1 2 −1 0 1
2 4 −2 0 2
−1 −2 1 0 −1
0 0 0 0 0
1 2 −1 0 1


and then multiply it by b. Parentheses make a big practical difference in
linear algebra! The projection onto S⊥ is simply

e = (I − P )b = b− p = b− x1 =


2
−1
1
1
1

 .

Again, it would be a lot more work to first compute I−P = 1
7


6 −2 1 0 −1
−2 3 2 0 −2
1 2 6 0 1
0 0 0 7 0
−1 −2 1 0 6


and then multiply it by b.

(c) We can write b as the sum of the two projections, b = p + e, and notice
that the first term p is an eigenvector of λ1 = − 1

2 and the second term is
in the orthogonal complement and hence (from part a) an eigenvector of
λ = 1. So,

Anb = λn1p+ 1ne =
1

(−2)n


1
2
−1
0
1

+


2
−1
1
1
1

 .
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Problem 8 [5+8+5 points]:
Suppose that Q is a 4× 3 real matrix with orthonormal columns q1, q2, q3.

(a) Starting from a real vector v (not in the column space of Q), give a for-
mula for the fourth orthonormal vector q4 that would be produced by
Gram–Schmidt on q1, q2, q3, v.

(b) Describe N(Q), N(QT ), N(QTQ), and N(QQT ): give the dimension and
a basis for each (in terms of q1, q2, q3, q4 as needed).

(c) Suppose b = q1 + 2q2 + 3q3 + 4q4. Give the least-squares solution x̂ =
minimizing ‖b−Qx‖.

Solution:
(a) The Gram–Schmidt formula is

q4 =
v −QQT v
‖v −QQT v‖

=
v − q1qT1 v − q2qT2 v − q3qT3 v∥∥v − q1qT1 v − q2qT2 v − q3qT3 v∥∥ ,

i.e. we subtract the projection onto C(Q) and then normalize. It is im-
portant that v /∈ C(Q) since otherwise subtracting the projection would
give zero (and we would then divide by zero).

(b) Q has orthonormal columns and thus is full column rank. Hence N(Q) = {~0} ⊂
R3, i.e. it is zero-dimensional and the basis is the empty set {}
(zero basis vectors for zero dimensions). N(QT ) = C(Q)⊥ is every-
thing perpendicular to q1, q2, q3, but this is simply the 1-dimensional
space N(QT ) = span q4 . We also know N(QTQ) = N(Q) = {~0} and

N(QQT ) = N(QT ) = span q4 from the general identityN(ATA) = N(A).

(c) We want Qx̂ to be the projection of b onto C(Q), i.e. Qx̂ = q1+2q2+3q3,

which implies x̂ =

 1
2
3

 .
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