
MIT 18.06 Exam 3 Solutions, Fall 2022
Johnson

Problem 1 [10+(4+4)+5+10 points]:

Two of the eigenvectors of the real matrix A are x1 =

 1
0
1

 and x2 = 0
i
1

with corresponding eigenvalues λ1 = 1 and λ2 = 2 + i.

(a) Another eigenvalue of A is λ3 = , and A is a _ × _ matrix equal
to A = . You can leave your answer for A as a product of matrices
and/or matrix inverses without simplifying.

(b) detA = and traceA = .

(c) det(A − λI) = (simplify to a polynomial in λ). (Time-saving hint:
You can do this without calculating A explicitly!)

(d) Give all of the eigenvalues, and corresponding eigenvectors, of (A2 −
2I)e(A−1). You can leave your eigenvalues as non-simplified arithmetic
expressions.

Solutions:

(a) A is real, so the eigenvalues and eigenvectors must come in complex-

conjugate pairs. So, λ3 = λ2 = 2− i and a corresponding eigenvector

is x3 = x2 =

 0
−i
1

. Since the eigenvectors have 3 components, A

must be a 3× 3 matrix, andd we can compute it using the diagonaliza-
tion (since we have a basis of 3 independent eigenvectors for 3 distinct
eigenvalues):

A =

 1 0 0
0 i −i
1 1 1


︸ ︷︷ ︸

X

 1
2 + i

2− i


︸ ︷︷ ︸

Λ

X−1 .
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(b) detA = λ1λ2λ3 = 1×|2+i|2 = 1×(22+12) = 5 . traceA = λ1+λ2+λ3 =

λ1 + 2 Reλ2 = 5 .

(c) This is the characteristic polynomial, and it is the same as the character-
istic polynomial of Λ (since similar matrices have the same characteristic
polynomial), so it must be det(A − λI) = det(Λ − λI) = (λ1 − λ)(λ2 −
λ)(λ3 − λ): its roots are λ1, λ2, λ3, and the leading term must be −λ3

as can be seen from the diagonal-matrix determinant det(Λ − λI). This
simplifies further to:

(λ1−λ)(λ2−λ)(λ3−λ) = (1−λ)(2+i−λ)(2−i−λ) = (1−λ)(λ2−4λ+5) = −λ3 + 5λ2 − 9λ+ 5 .

Note that this is a purely real polynomial as expected (since A is real),
despite the presence of complex roots.

A common error was to get the sign wrong. Remember that det(A−λI) 6=
det(λI −A) =

∏
k(λ− λk) unless A is an m×m matrix where m is even,

since det(−A) = (−1)m det(A). Of course, det(λI−A) has the same roots,
but it is not quite what was asked for.

Some people gave an answer of “0”, which of course would be correct for
det(A− λkI) with k = 1, 2, 3, i.e. if λ were one of the eigenvalues. But λ
here was not specified to be one of the eigenvalues λk in this problem.

Several people used the formula det(A − λI) = λ2 − trace(A)λ + det(A),
but this only applies to 2 × 2 matrices! (It only has 2 roots!) An even
more egregious error is to write “det(A−λI) = det(A)−λ det(I)” or simi-
lar—the determinant is not a linear function (it is only linear in individual
rows or columns).

(d) This matrix has the same eigenvectors x1, x2, x3 and corresponding

eigenvalues (λ2
k − 2)eλ

−1
k for k = 1, 2, 3, respectively. More explicitly,

λ1, λ2, λ3 = −e, (1 + 4i)e
1

2+i , (1− 4i)e
1

2−i .
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Problem 2 [11+11+11 points]:
Consider the differential equation

dx

dt
= −BTBx, B =


1 1 1
2 0 2
3 1 3
4 0 4
5 1 5

 .

(a) x(t) = (constant vector) is a possible solution of this ODE for what vec-
tor(s) x? (Describe all possible answers. Look carefully at B!)

(b) Which of the following looks like a possible plot of ‖x(t)‖ versus t for
some initial x(0)? Circle all possibilities. (Note: all vertical axes are
identical.)

You know this because the eigenvalues of must be .

0 2 4
t

0.0

0.5

1.0

1.5

2.0

x(
t)

0 2 4
t

0 2 4
t

0 2 4
t

(c) For x(0) =

 1
2
3

 , give a good approximation for x(1000) ≈ .

(Give a specific numerical vector, no unknowns.)

Solutions:

(a) A constant vector is a solution when dx
dt = −BTBx = 0, i.e. if and only if

x ∈ N(BTB). But (from exam-2 material), we know N(BTB) = N(B),
and looking carefully at B the nullspace should be obvious: its first and
third columns are identical, while the middle column is clearly indepen-

dent, so N(B) = span

 1
0
−1

 are the possible constant-x solutions,

corresponding to multiples of the eigenvector x1 =

 1
0
−1

 for λ1 = 0 of

BTB.

(b) We know that the eigenvalues of −BTB must be ≤ 0 because any
matrix of this form is negative semidefinite. Furthermore, we know from
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part (a) that there is one λ = 0 eigenvalue, so the eigenvalue must be
λ1 = 0, λ2 < 0, λ3 < 0 . This means that there are only exponentially
decaying and/or constant solutions x(t) or any superposition thereof.

Hence the two possibilities are the left two graphs: either decaying
to a nonzero constant or decaying to zero (if the x1 component happens
to be zero). You cannot have growing or oscillating solutions to this ODE,
as in the right two graphs.

(From Julia, the other two eigenvalues turn out to be λ2 ≈ −111.493 and
λ3 ≈ −1.5068. In principle, you could find these analytically by solving a
quadratic equation, since you already know one of the roots of the char-
acteristic polynomial, but I don’t expect you to carry out this calculation
on the exam!)

(c) In general, we expect the solutions to look like a superposition of the
eigenvectors of −BTB:

x(t) = c1�
��*

1
eλ1tx1 + c2e

λ2tx2 + c3e
λ3tx3︸ ︷︷ ︸

exponentially decaying

≈ c1x1 for large t,

but the x2 and x3 terms are exponentially decaying since the correspond-
ing eigenvalues must be < 0 from above. Hence, for a large time t = 1000,
unless we get very unlucky and λ2, λ3 are very small (which turns out not
to be the case here), x(t) will be dominated by the first term c1x1.

How do we find the coefficient c1? For a general eigenproblem, we’d need
to solve Xc = x(0), which would require us to calculate x2 and x3 and
then go through a laborious (for humans) Gaussian-elimination process.
But −BTB is Hermitian (real-symmetric) and so x1 must be orthog-
onal to the other two eigenvectors (for λ2, λ3 6= λ1 = 0). Hence, we can
find the coefficient simply by taking a dot product, i.e. an orthogonal
projection onto x1:

x(t) ≈ c1x1 = x1
xT1 x(0)

xT1 x1
=

 1
0
−1

����
�
��

��*
−2 1

0
−1

T  1
2
3


2

=

 −1
0

+1

 .
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Problem 3 [10+8+8+8 points]:
Suppose that the sequence of vectors y0, y1, y2, . . . ∈ Rm satisfies the recurrence

yn − yn−1

h
= A

(
yn−1 + yn

2

)
for some real h > 0 and some m×m matrix A.

(a) Write yn = ( )yn−1 = ( )y0, where you fill in the blanks with some
matrices written in terms of A, I (the m×m identity), h, and n.

(b) If y0 = xk where xk is an eigenvector of A with eigenvalue λk, give a
much simpler formula yn = in terms of xk, λk, h, n.

(c) The solutions yn must be decaying to zero as n → ∞ if A is (circle
all that apply): real, Hermitian, positive-definite, positive-semidefinite,
negative-definite, negative-semidefinite. Justify your answer (briefly!).

(d) If A = iB where B is Hermitian and invertible, then the solutions yn
for y0 6= 0 must be (circle one): growing, decaying to zero, approaching
a nonzero constant, oscillating. Justify your answer (briefly!).

Solutions:

Side commentary (not relevant to 18.06): this problem is actually motivated
by “Crank–Nicolson” schemes for discretizing dy

dt = Ay, with yn = y(ht) for
a discrete “timestep” h, and where the time derivative is approximated by a
centered “finite difference.” Negative-definite and semi-definite A then arise in
“parabolic” or “diffusion” type equations (with decaying solutions as in part c),
while “anti-Hermitian” A = −AH arise in “hyperbolic” or “wave” equations (with
oscillating solutions as in part d).

(a) Simply moving all of the yn terms to the left and all the yn−1 terms to
the right gives yn

h −
A
2 yn = yn−1

h + A
2 yn−1, which can be rewritten as(

I

h
− A

2

)
yn =

(
I

h
+
A

2

)
yn−1

=⇒ yn =

(
I

h
− A

2

)−1(
I

h
+
A

2

)
︸ ︷︷ ︸

C

yn−1 =

(
I − h

2
A

)−1(
I +

h

2
A

)
︸ ︷︷ ︸

C

yn−1

(where the latter version is obtained by multiplying and dividing by h.
So, y1 = Cy0, y2 = Cy1 = C2y0, and so on, giving us

yn = Cny0

where C is the matrix defined above.
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Note that for this recurrence to exist, we must have I − h
2A invertible,

so that assumption is arguably implicit in the problem.

Note also that the matrices (I − h
2A)−1 and (I + h

2A) in fact commute, so
there are lots of additional correct ways to write this solution.

(b) If Axk = λkxk , then xk is also an eigenvector of C with eigenvalue
µk =

1+ h
2 λk

1−h
2 λk

=
1
h + 1

2λk
1
h−

1
2λk

=
2
h +λk
2
h−λk

, hence

yn = Cnxk = µnkxk =

(
1 + h

2λk

1− h
2λk

)n
xk =

( 1
h + 1

2λk
1
h −

1
2λk

)n
xk =

( 2
h + λk
2
h − λk

)n
xk ,

where again we can write the answer in several equivalent forms.

(c) The key to both parts (c) and (d) is to understand that we need to
analyze the eigenvalues µk of C, and in particular we need to know
something about the magnitudes |µk| in order to know what happens to
matrix powers Cnxk.

To be decaying, we must have all eigenvalues µk of C satisfy |µk| < 1.
Under which of the listed conditions is this guaranteed?

It is clearly not sufficient for A to be real, or even Hermitian. If λk
could be any real number (as for a Hermitian matrix), then it could be
a positive real number, and by inspection |µk| > 1 if λk > 0 (since the
numerator is bigger than the denominator). By the same token, we cannot
have A positive definite or semidefinite. We also cannot have A negative
semidefinite, since that would allow λk = 0 eigenvalues, giving µk = 1 (a
steady state, not decaying, solution).

However, the last possibility works: if A is negative definite, then its
eigenvalues are all λk < 0, which by inspection gives |µk| < 1 since the
numerator is smaller in magnitude than the denominator (numerator =
subtraction, denominator = addition).

Of course, ifA is negative-definite then it must also be negative-semidefinite
and Hermitian, but the latter are not sufficient by themselves.

(d) If A = iB where B is Hermitian (real eigenvalues), then all of the eigen-
values of A are purely imaginary (i× real). If B is invertible, then none
of the eigenvalues are zero. So A′s eigenvalues λk have the form λk = ibk
where bk is a real number 6= 0.

What does this tell us about the eigenvalues µk of C? Well, we have

µk =
2
h + ibk
2
h − ibk

=⇒ |µk| =
∣∣ 2
h + ibk

∣∣∣∣ 2
h − ibk

∣∣ = 1,

6



since the numerator and denominator are complex conjugates (which
have the same magnitude). Furthermore, since bk 6= 0, we have µk 6= 1.
Therefore, since the eigenvalues of B are complex numbers with unit
magnitude but 6= 1, we must have oscillating solutions yn for any y0 6=
0.
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