
MIT 18.06 Exam 2 Solutions, Fall 2022
Johnson

Problem 1 [(5+5)+10 points]:
These two parts are answered independently:

(a) Consider the 2d “plane” S spanned by

a1 =


1
1
1
1

 , a2 =


1
0
0
1

 .

(i) Give an orthonormal basis for S.

Solution: We just need to do Gram–Schmidt:

q1 =
a1

��
�* 2

‖a1‖
=

1

2


1
1
1
1


and

q2 =
a2 − q1��

�* 1

qT1 a2
‖ · · · ‖

=

1
2


1
−1
−1
1


�
��*

1

‖ · · · ‖
=

1

2


1
−1
−1
1

 .

(Although this is the most obvious approach, there are infinitely many other orthonormal
bases we chould have chosen. For example, we could have done Gram–Schmidt in the
opposite order, on a2, a1.)

(ii) Find the closest point in S to the (column vector) y = [−2, 4,−6, 8].

Solution: This is just the orthogonal projection p of y onto S, which is easy to do
using the orthonormal basis from (a):

p = q1�
��>

2
qT1 y + q2�

��>
4

qT2 y =


1
1
1
1

+ 2


1
−1
−1
1

 =


3
−1
−1
3

 .

Note that we could also have computed the projection matrix P = QQT = q1q
T
1 +

q2q
T
2 and then multiplied it by y, but this is much more work (matrices require more

arithmetic than vectors)! Even more work would be using A =
(
a1 a2

)
and then

using A(ATA)−1AT , i..e. solving the normal equations ATAx̂ = AT y and then finding
p = Ax̂.
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(b) Suppose that we have 100 measurements (pk, vk) of the volume v of a gas vs. its pressure
p, and we want to fit it to a function of the form v(p) = c1

p + c2 for unknown constants
c1, c2. Write down the 2× 2 system of equations you would solve to find c1, c2 in order to
minimize the sum of the squared errors

∑
k[v(pk) − vk]2 . You can write your answer (left-

and right-hand sides) as products of matrices and/or vectors, as long as you specify what each
term is (in terms of the unknowns c1, c2 and/or the data p1, . . . , p100 and v1, . . . , v100).

Solution: This is a least-square problem, so the answer is to solve the normal equations
ATAc = AT b for c =

(
c1 c2

)T where

A =


1
p1

1
1
p2

1
...

...
1

p100
1

 and b =


v1
v2
...

v100



so that Ac is the “model”


v(p1)
v(p2)
...

v(p100)

 and b are the data we are fitting to, so that
∑

k[v(pk)−

vk]2 = ‖Ac− b‖2.
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Problem 2 [4+4+4+4+4+4 points]:
These parts can be answered independently:

(a) The matrix a1a
T
1

aT
1 a1

+
a2a

T
2

aT
2 a2

is the projection matrix onto the span of a1, a2 ∈ Rm if a1 and a2 are
(circle all true answers): independent, orthogonal, parallel, orthonormal, singular, length-1.

Solution: orthogonal or orthonormal . (They must be orthogonal for this to be a pro-
jection—that’s the only way you can project one vector at a time via dot products. Their
normalization is irrelevant because we are dividing each term by the length2, but it’s fine if
they are normalized to length 1.)

Ideally, this problem should have specified explicitly that the vectors a1, a2 are nonzero
(zero vectors are orthogonal to everything, including themselves), but this is implicit in the
problem statement since the formula a1a

T
1

aT
1 a1

+
a2a

T
2

aT
2 a2

makes no sense for zero vectors ( 00?).

(b) If x̂ is the least-square solution minimizing ‖Ax − b‖ over x, then Ax̂ − b must lie in which
fundamental subspace of A?

Solution: C(A)⊥ = N(AT ) , i.e. the left nullspace of A. Ax̂ is the projection onto
C(A), and the error b−Ax̂ is orthogonal to C(A).

(c) A,B are 10 × 3 matrices, and b ∈ R10. If we want to find the vector ŷ ∈ R3 for which
Aŷ − b ∈ C(B)⊥, then ŷ satisfies the 3 × 3 system of equations (in terms of
A,B, b, ŷ).

Solution: C(B)⊥ = N(BT ), so we just need BT (Aŷ − b) = 0 =⇒ BTAŷ = BT b .

Note that this is very similar to how we derived the normal equations, by requiring that
Ax̂− b be orthogonal to C(A); that is, you get the normal equations if you set B = A.

(d) A,B are matrices with C(A) = C(B), and we have solved ATAx̂ = AT b for x̂ and BTBŷ =
BT b for ŷ. Circle statements (if any) that must be true: x̂ = ŷ, Ax̂ = Bŷ , and/or
x̂T b = ŷT b.

Solution: Ax̂ = Bŷ , since these are the orthogonal projections onto C(A) = C(B); the
column spaces are the same, so the projections are the same. (But the coefficients of the
projection x̂ in the A basis don’t need to match the coefficients ŷ in the B basis!)

(e) Q is a 5× 3 matrix with orthonormal columns. Circle which must be true: ‖Qx‖ = ‖x‖ for
x ∈ R3, ‖QT y‖ = ‖y‖ for y ∈ R5.

Solution: ‖Qx‖ = ‖x‖ , since ‖Qx‖ =
√

(Qx)T (Qx) =

√
xT��

�* I

QTQx = ‖x‖. In contrast,

‖QT y‖ =
√

(QT y)T (QT y) =
√
yTQQT y, but QQT 6= I since Q is not square—it is a 5 × 5

projection matrix onto the 3-dimensional subspace C(Q).

(f) If A is a 3× 3 matrix with det(A) = 3, then det[ATA−1] + det(2A) = .

Solution: Using the properties of determinants, we find:

det[ATA−1] + det(2A) = det(AT )︸ ︷︷ ︸
detA=3

det(A−1)︸ ︷︷ ︸
(detA)−1= 1

3

+ det(2A)︸ ︷︷ ︸
23 det(A)=24

= 25 .
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Problem 3 [(3+3+3)+5 points]:
These two parts are answered independently:

(a) If A is a 10× 3 matrix has an SVD UΣV T with Σ =

 100
10

1

, then

(i) U is a × matrix, V is a × matrix, and A has rank .

Solution: U is a 10× 3 matrix, V is a 3× 3 matrix (this is the standard size of
the “thin” SVD we covered in class, but these are also the only possible sizes that will
give the correct 10× 3 size for A!), and the rank is 3 (the number of nonzero singular
values σ1 = 100, σ2 = 10, σ3 = 1.

(ii) The projection matrix onto C(A) is and the projection onto C(AT ) is
(simplest answers in terms of U,Σ, V, I).

Solution: U is an orthonormal basis for C(A) , so the projection is UUT . V is an
orthonormal basis for C(AT ), so the projection is V V T , but to get full credit you should
notice that V is square and hence unitary, so V V T = I . (Alternatively, since A is
10× 3 with full column rank, the row space is all of R3 , so the projection must be I.)

Note that we could also compute the projection onto C(A) by the formula A(ATA)−1AT

if we substitute A = UΣV T and use the fact that V is square and hence V T = V −1:
UΣV T (V ΣT���UTUΣV T )−1V ΣTUT = UΣ��

���V T (V T )−1Σ−2���
�(V )−1V ΣUT = UUT ; not only

is this a lot more work, but it also doesn’t exploit the fact that we know that U is an
orthonormal basis for C(A). Similarly, we could imagine using AT (AAT )−1A to project
onto C(AT ) and simplify, but this is even tricker to get the algebra right—in fact, you
can’t use that formula directly because AAT = UΣ2UT is not even invertible (it is a
10 × 10 matrix of rank 3!)—we would instead have to start with the normal equations
AAT y = Ab (which are solvable) and then find the projection Pb = AT y, which (after a
fair amount of work) can indeed be simplified to Pb = V V T b.

(iii) A good rank-2 approximation for A is (in terms of U, V )

Solution: We get a good rank-2 approximation (in some sense the “best” rank-2 ap-
proximation) by setting the third singular value to zero, i.e.

U

 100
10

0

V T = 100u1v
T
1 + 10u2v

T
2

where u1, u2 are the first two columns of U and v1, v2 are the first two columns of V .

(b) Iff(x) = (xT y)2 for x, y ∈ Rn, then give a formula for ∇f (in terms of y and/or x).

Solution: Using the product rule,

df = d(xT y)(xT y) + (xT y)d(xT y) = 2(xT y)(dxT y) = 2(xT y)yT︸ ︷︷ ︸
(∇f)T

dx

so ∇f = 2(xT y)y . Alternatively, we could have used the power rule df = 2(xT y)d(xT y).

Note that the parentheses are important here. If we write it without parentheses, we might be
tempted to write 2xT yy = 2xT y2, but this is nonsense—you can’t multiply yy = y2 because
y is a column vector. To get an expression that is associative (i.e., which works regardless of
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where/whether we put parentheses), we would have to write the gradient as something like
∇f = 2yxT y or ∇f = 2yyTx, using the fact that xT y = yTx is a scalar that we can move
around freely.
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