
MIT 18.06 Exam 1 Solutions, Fall 2022
Johnson

Problem 1 (6+6+6+6+6+6=36 points):
Fill in the blanks:

(a) Any solution x to Ax = b (if it exists) is always a sum of a vector in the
space of A plus a vector in the space of A.

(b) Ax = b is solvable if (and only if) b is orthogonal to every vector in the
space of A.

(c) If A is a 4 × 3 matrix and Ax = b is not solvable for some b and the
solutions are not unique when they exist, possible values for the rank of
A are (list all possibilities).

(d) C(AB) must (contain ⊇ / be contained in ⊆ / equal =) the
column space of (A or B) for all 4× 4 matrices A and B.

(e) If x, y, z ∈ Rn are n-component vectors, then the number of operations to
compute xyT z scales proportional to (n, n2, or n3) for large n if
you compute it in the order (xyT )z, or proportional to (n, n2, or
n3) if you compute it in the order x(yT z).

(f) If x1 and x2 are both solutions to Ax = b, then the vector x1 − x2 must
be in the space of A.

Solutions:

(a) Any solution is a sum of a vector in the null space of A plus a vector
in the row space of A. The reason for this is that N(A) and C(AT ) are
orthogonal complements, so together they span the whole space of possible
“inputs” x to A (i.e. all of Rn if A is m× n).

(b) b must be orthogonal to every vector in the left nullspace of A—since
N(AT ) is the orthogonal complement of C(A), being orthogonal to N(AT )
is equivalent to being in C(A), and the condition for Ax = b to be solvable
is for b ∈ C(A).

(c) A must be rank deficient for the solutions to not be unique and not
necessarily exist, so the rank must be 0, 1, or 2.
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(d) C(AB) must be contained in the column space of A, i.e. C(AB) ⊆
C(A). Intuitively, the “output” of the linear operator AB comes from A,
so its column space must be related to that of A (not B, which affects the
“inputs” to A). More precisely, C(AB) consists of vectors ABx for any x,
but ABx = A(Bx) is A times some vector, so it must be in C(A), and
hence C(AB) ⊆ C(A).

The converse is not true unless B is invertible, however: C(A) = C(AB)
only if B is an invertible matrix, since that’s the only way you can go from
any vector Ay in C(A) to a vector Ay = AB(some vector) in C(AB), by
setting (some vector) = B−1y.

(e) (xyT )z requires ∼ n2 arithmetic operations (forming the n × n matrix
xyT requires n2 multiplications, and then multiplying a matrix times the
vector z is also ∼ n2), while x(yT z) requires ∼ n arithmetic operations
(the dot product yT z costs ∼ n , and then multiplying the resulting scalar
by the vector x costs another n multiplications).

(f) x1 − x2 must be in the null space of A. The only way Ax = b can have
multiple solutions is for them to differ by something in N(A). We can see
this explicitly from A(x1 − x2) = Ax1 − Ax2 = b − b = ~0. (Many people
answered “column space” here, which is a nonsensical answer: the column
space contains vectors like b, which is not even the right “shape” for x if
A is non-square.)

Hot tip: remember that for an m × n matrix takes inputs (“x”) in Rn

to outputs (b = Ax) in Rm. The “input” subspaces of Rn are N(A)
and C(AT ), while the “output” subspaces of Rm are C(A) and N(AT ).
So if any problem is asking you about “inputs” (or things you add or dot-
product with inputs), like parts (a) or (f), it must involve N(A) and/or
C(AT ). And if any problem is asking you about “outputs” (or things you
add or dot-product with outputs), like part (b), it must be asking about
C(A) and N(AT ).

Another common mistake: many people also write something like “so-
lution space” for some of the answers, which I guess means the set of
solutions x to Ax = b. First, this makes no sense because the solutions
depend on both A and b, so how could there be a “solution space of A” by
itself? Second, the set of solutions x is not generally a subspace, because
it does not include x = 0 (except in the special case b = 0, of course).
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Problem 2 (6+11+6+11=34 points):
If 

1 2 4 2 5
2 3 5 6

3 4 3
4 3

5


︸ ︷︷ ︸

A

B

 4 1 1
1 1

2


︸ ︷︷ ︸

C

x = b

has the complete solution

x =

 7
1
2

+ α1

 2
3
−4

 ,

for any scalar α1, then:

(a) What is the size and rank of B?

(b) The space of B must be spanned by the basis .

(c) In part (b), you could alternatively have found a basis for the
space of B, which is also fully determined by the information given because
it is to your answer from (b).

(d) Give a possible matrix B.

Solutions:

(a) B must be 5 × 3 in order for ABC to make sense. From the complete
solution, we have a 1d nullspace, so the 5×3 matrix ABC must have rank
r = 2. A and C are clearly invertible matrices (upper triangular with all
of their pivots), so they can’t add any new vectors to the nullspace: the
nullspace must come from B, so B must also be rank 2.

(b) As in the previous part, we know a vector in the nullspace from the α1

term of the complete solution: we must have

ABC

 2
3
−4

 = ~0 =⇒ B

C
 2

3
−4

 = A−1~0 = ~0,

but that means that

C

 2
3
−4

 =

 4 · 2 + 3− 4
3− 4

2 · (−4)

 =

 7
−1
−8


must be in N(B). Hence [7,−1,−8] is a basis for the 1d null space of
B.
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(c) Once we know N(B), we also know the row space of B, because the
row space C(BT ) is orthogonal to N(B). That is, we just need the 2d
subspace (plane) of vectors orthogonal to [7,−1,−8], which we could find
by computing the nullspace of the 1-row matrix

(
7 −1 8

)
.

(d) We don’t know anything other than the size, rank, and nullspace / row
space of B. So, we just need any 5×3matrix of rank 2 (two independent
columns) with [7,−1,−8] in its nullspace. That is, if its columns are
B =

(
c1 c2 c3

)
, then we need 7c1 − c2 − 8c3 = ~0, or equivalently

c2 = 7c1 − 8c3 . So, we can just pick the first and third columns to be any
independent (non-parallel) vectors we want—say, for example, [1, 0, 0, 0, 0]
and [0, 1, 0, 0, 0]—and compute the second column by this formula:

B =


1 7 0
0 −8 1
0 0 0
0 0 0
0 0 0

 .

Of course, there are infinitely many other possible choices for B, but they
should all share these basic features.

Problem 3 (5+6+13+6=30 points):
Consider the matrix A = BCD given by:

A =


1 0 2 0

1 0 3
−1 0

1


︸ ︷︷ ︸

B


1 0 2 0
0 2 0 1
0 2 −1 0
1 4 0 1


︸ ︷︷ ︸

C


2

1
−2

3


︸ ︷︷ ︸

D

.

(a) Write A−1 in terms of B−1, C−1, and D−1 (without computing any num-
bers).

(b) To compute the sum x of the four columns of A−1, you could solve Ax = b
for x using what right-hand-side vector b?

(c) Compute the sum of the columns of A−1.

(d) A basis for the column space C(A) is .

Solutions:

(a) A−1 = D−1C−1B−1 .
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(b) The sum of the columns of A−1 is x = A−1


1
1
1
1

, or equivalently the

solution to Ax =


1
1
1
1

 .

(c) We want to compute

x = A−1


1
1
1
1

 = D−1 C−1B−1


1
1
1
1


︸ ︷︷ ︸

c︸ ︷︷ ︸
d

.

As usual, we want to do this without explicitly multiplying or inverting
matrices, since that is a lot more effort than we usually need. In particu-
lar, we can break it into the following steps. (You can get a lot of partial
credit here just by outlining the steps below: backsubstitution, elimina-
tion, diagonal solve.)

(Note that explicitly multiplying A = BCD and then solving Ax =
[1, 1, 1, 1] by elimination is also possible, but is substantially more work.
Multiplying BC is more work than handling B separately via backsubsti-
tution, and multiplying CD is also more work than solving D separately.
Think of the arithmetic counts: backsubstitution takes ∼ n2 operations,
while multiplying two matrices is ∼ n3. Similarly, computing D−1d re-
quires only n divisions for a diagonal D, whereas multiplying C by a
diagonal matrix takes n2 multiplications. If the matrix is already factored
for you into “nice” matrices, you waste a lot of effort if you throw that
factorization away by multiplying the factors together!)

(i) Compute c = B−1


1
1
1
1

. Since Bis upper-triangular, we can do

this by back-substitution, from bottom to top: c4 = 1, c3 = −1,

c2 = 1− 3c4 = −2, c1 = 1− 2c3 = 3, so c =


3
−2
−1
1

.

(ii) Compute d = C−1c, i.e. solve Cd = c. We proceed by elimination,
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augmenting C with the right-hand side c:
1 0 2 0
0 2 0 1
0 2 −1 0
1 4 0 1︸ ︷︷ ︸

C

3
−2
−1
1︸ ︷︷ ︸
c


 


1 0 2 0
0 2 0 1
0 2 −1 0
0 4 −2 1

3
−2
−1
−2

 


1 0 2 0
0 2 0 1
0 0 −1 −1
0 0 −2 −1

3
−2
1
2

 ,

 


1 0 2 0
0 2 0 1
0 0 −1 −1
0 0 1︸ ︷︷ ︸

U

3
−2
1
0


which we then solve by backsubstitution (bottom to top), to get
d4 = 0, d3 = −1, d2 = (−2− d4)/2 = −1, d1 = 3− 2d3 = 5, hence

d =


5
−1
−1
0

 .

(iii) Finally, compute x = D−1d. Since D is a diagonal matrix, this is
easy: we just divide d by the diagonal elements, yielding

x =


5/2
−1
1/2
0

 .

(d) A is invertible, so C(A) is all of R4. So any 4 linearly independent vectors
work, e.g. the columns of B, C, or D, or simply the Cartesian basis (the
columns of the 4× 4 identity matrix I).
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