
Final Exam Review Session #1
December 12, 2019

1. Compute the LDU factorization of the following matrix:

X =

−1 0 2
2 1 −1
−3 4 2

 .

Solution:−1 0 2
2 1 −1
−3 4 2

 r2 7→2r1+r2−−−−−−−→

−1 0 2
2 1 −1
0 4 −4

 r3 7→−3r1+r3−−−−−−−−→

−1 0 2
0 1 3
0 4 −4

 r3 7→−4r2+r3−−−−−−−−→

−1 0 2
0 1 3
0 0 −16

 ,
so −1 0 2

0 1 3
0 0 −16

 =

1 0 0
0 1 0
0 −4 1

 1 0 0
0 1 0
−3 0 1

1 0 0
2 1 0
0 0 1

−1 0 2
2 1 −1
−3 4 2

 .
(Recall that matrix multiplication on the left corresponds to taking linear combinations of the rows!)

That is, letting Y =

−1 0 2
0 1 3
0 0 −16

, we have that Y = E
(−4)
32 E

(−3)
31 E

(2)
21 X. However, Y = DU where

D =

−1 0 0
0 1 0
0 0 −16

 and U =

1 0 −2
0 1 3
0 0 1

, so letting L = (E
(−4)
32 E

(−3)
31 E

(2)
21 )−1 = E

(−2)
21 E

(3)
31 E

(4)
32 it

follows that X = LDU . Explicitly,

L =

 1 0 0
−2 1 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 4 1

 =

 1 0 0
−2 1 0
0 0 1

1 0 0
0 1 0
3 4 1

 =

 1 0 0
−2 1 0
3 4 1

 .

2. (a) Find a basis for the null space of the following matrix:

A =


1 0 2 3
0 2 1 3
2 −6 1 −3
3 0 6 9

 .

Solution: We perform Gauss-Jordan elimination to find the reduced row echelon form of A:
1 0 2 3
0 2 1 3
2 −6 1 −3
3 0 6 9

→


1 0 2 3
0 2 1 3
2 −6 1 −3
0 0 0 0

→


1 0 2 3
0 2 1 3
0 −6 −3 −9
0 0 0 0

→


1 0 2 3
0 2 1 3
0 0 0 0
0 0 0 0

→


1 0 2 3
0 1 1

2
3
2

0 0 0 0
0 0 0 0



Letting x =


x1
x2
x3
x4

 be a general element of the null space, we find that

x1 = −2x3 − 3x4

and

x2 = −1

2
x3 −

3

2
x4,



so

x = x3


−2
− 1

2
1
0

− x4

−3
− 3

2
0
1

 .

Therefore

{
−2
− 1

2
1
0

 ,

−3
− 3

2
0
1

} is a basis for N(A).

(b) Let

b = A


2
1
0
0

 .
Find the general solution vgeneral to Av = b.

Solution: We have that the general solution vgeneral = vparticular+wgeneral, where vparticular is a specific
solution to Av = b and wgeneral is the general solution to Aw = 0 (i.e. a general element of N(A)). Because

b = A


2
1
0
0

, it follows that


2
1
0
0

 is a particular solution. Therefore, using our computation from (a) we find

that

vgeneral =


2
1
0
0

+ α


−2
− 1

2
1
0

+ β


−3
− 3

2
0
1

 ,
where α, β ∈ R.

3. (a) Let v1 =

 1
−2
0

 ,v2 =

 0
2
−1

, and v3 =

−1
2
1

, and let B =
[
v1 v2 v3

]
. Compute the QR factorization

of B.

Solution: We perform the Gram-Schmidt process:

v1 → w1 = q1 =

 1√
5

− 2√
5

0



v2 → w2 = v2 − (v2 · q1)q1 =

 0
2
−1

+
4

5

 1
−2
0

 =

 4
5
2
5
−1



w2 → q2 =

√
5

3

 4
5
2
5
−1

 =


4

3
√
5

2
3
√
5

−
√
5
3

 =
1

3
√

5

 4
2
−5



v3 → w3 = v3 − (v3 · q1)q1 − (v3 · q2)q2 =

−1
2
1

+

 1
−2
0

+

 5
9
2
9
− 5

9

 =
2

9

2
1
2





w3 → q3 =
1

3

2
1
2


We therefore set

Q =


1√
5

4
3
√
5

2
3

− 2√
5

2
3
√
5

1
3

0 −
√
5
3

2
3

 .
The preceding computations tell us that

Q = BD
(1/
√
5)

1 E
(4/
√
5)

12 D
√
5/3

2 E
(
√
5)

13 E
(
√
5/3)

23 D
(3/2)
3 ,

so letting R = (D
(1/
√
5)

1 E
(4/
√
5)

12 D
√
5/3

2 E
(
√
5)

13 E
(
√
5/3)

23 D
(3/2)
3 )−1, we have that B = QR. Explicitly,

R =

1 0 0
0 1 0
0 0 2

3

1 0 −
√

5

0 1 −
√
5
3

0 0 1

1 0 0
0 3√

5
0

0 0 1

1 − 4√
5

0

0 1 0
0 0 1

√5 0 0
0 1 0
0 0 1

 =


√

5 − 4√
5
−
√

5

0 3√
5
−
√
5
3

0 0 2
3

 .

(b) Let U be the subspace of R3 spanned by v1 and v2. Compute PU , the projection onto U .

Solution: Let A =
[
q1 q2

]
. Then, by the orthonormality of {q1, q2}, we see that

PU = A(ATA)−1AT = AAT = q1q
T
1 + q2q

T
2

=

 1
5 − 2

5 0
− 2

5
4
5 0

0 0 0

+

 16
45

8
45 − 4

9
8
45

4
45 − 2

9
− 4

9 − 2
9

5
9

 =

 5
9 − 2

9 − 4
9

− 2
9

8
9 − 2

9
− 4

9 − 2
9

5
9

 .

(c) Let W be the orthogonal complement of U . What is a basis for W? Compute PW , the projection onto W .

Solution: We see that {q3} is a basis for W . Then,

PW = q3q
T
3 =

 4
9

2
9

4
9

2
9

1
9

2
9

4
9

2
9

4
9

 .
Alternatively, we could have observed that PW must equal I−PU because U and W are orthocomplements
of each other.

4. Let

T =

−2 3 −4
1 −2 3
3 −4 4

 .
Compute det(T ) by row operations, cofactor expansion, and the big formula.

Solution: We first compute the determinant of T by row operations:−2 3 −4
1 −2 3
3 −4 4

→
 1 −2 3
−2 3 −4
3 −4 4

→
1 −2 3

0 −1 2
0 2 −5

→
1 −2 3

0 −1 2
0 0 −1

 .



The determinant of T is therefore (−1) (for the row swap done first) multiplied by 1(−1)(−1) = 1. Thus
det(T ) = −1.

We next compute the determinant by cofactor expansion along the second row:

det(T ) = (−1)2+1(1)(12− 16) + (−1)2+2(−2)(−8 + 12) + (−1)2+3(3)(8− 9) = 4− 8 + 3 = −1.

Finally, we compute the determinant by using the big formula:

det(T ) = (−1)sgn 1(−2)(−2)(4) + (−1)sgn(132)(3)(3)(3) + (−1)sgn(123)(1)(−4)(−4)

+(−1)sgn(12)(1)(3)(4) + (−1)sgn(23)(−2)(−4)(3) + (−1)sgn(13)(3)(−2)(−4)

= 16 + 27 + 16− 12− 24− 24 = −1.

Note that here, the determinant was the sum of the products of all the diagonals of T (reversing the signs
for diagonals of the opposite direction), but this does not work for matrices of higher dimensions (for one,
there are fewer diagonals than permutations in general).


