Final Exam Review Session #1

December 12, 2019

1. Compute the LDU factorization of the following matrix:

-1 0 2
X=]2 1 -1
-3 4 2
Solution:
-1 0 2 -1 0 2 -1 0 2 -1 0 2
RN R | i N B B T ) R U T B e wi N ) B
-3 4 2 0 4 —4 0 4 —4 0 0 -—16
SO
-1 0 2 1 0 0 1 0 o[ {1 0 of -1 0 2
0 1 3 =(0 1 O 0 1 02 1 O 2 1 -1
0 0 -16 0 —4 1| [-3 0 1{ [0 O 1| |-3 4 2
(Recall that matrix multiplication on the left corresponds to taking linear combinations of the rows!)
-1 0 2
That is, letting Y = | 0 1 3 |, we have that ¥ = E§2_4)E§1_3)E£?)X. However, Y = DU where
0 0 -16
-1 0 0 1 0 -2 )
D=0 1 0|andU=1{0 1 3], soletting L = (EGYEGYE) - = ESYEPED it
0 0 -—16 0 0 1
follows that X = LDU. Explicitly,
1 0 0|1 0 of{1 0 O 1 0 0|1 0 O 1 0 0
L=|-2 1 0/|0 1 0[]0 1 0O|=|-2 1 0[]0 1 0|=]-2 1 0
0O 0 1] (3 0 1] |0 4 1 0 0 1| (3 4 1 3 41
2. (a) Find a basis for the null space of the following matrix:
1 0 2 3
0o 2 1 3
A= 2 -6 1 -3
3 0 6 9
Solution: We perform Gauss-Jordan elimination to find the reduced row echelon form of A:
1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 10 2 3
0 2 1 3| 10 2 1 3 0 2 1 3] |02 13 |01 3 3
2 -6 1 -3 2 -6 1 -3 0 -6 -3 -9 00 00 0 0 0 O
3 0 6 9 0 0 0 O 0 0 0 0 00 0 0 00 0 O
1
Letting © = Jf be a general element of the null space, we find that
3
T4
1‘1:—2.133—3.234
and
1 3
T2 = — T3 Ty,

2




S0
-2 -3
_1 _3
T =23 12 — 4 02
0 1
:l :§
Therefore { 12 , 02 } is a basis for N(A).
0 1
(b) Let
2
1
b=A 0
0

Find the general solution vgenerqr to Av =b.

Solution: We have that the general solution vgenerai = Uparticular +Wgenerat; Where Upariicuiar is a specific
solution to Av = b and Wgenerai is the general solution to Aw = 0 (i.e. a general element of N(A)). Because

2 2
b=A (1) , it follows that (1) is a particular solution. Therefore, using our computation from (a) we find
0 0
that
2 -2 -3
1 _1 _3
Vgeneral = 0 + o 12 + 5 02 )
0 0 1
where a, 5 € R.
1 0 -1
3. (a) Let vy = |—-2| ,v2=| 2 |,andwvs= | 2 |, and let B = [vl V3 ’Ug]. Compute the QR factorization
0 —1 1
of B.
Solution: We perform the Gram-Schmidt process:
1
V3
V1 w1 =q; = Y
0
0 41 %
vy = Wwo =2 — (V2:q1)q; = | 2 +5 -2 =1z
-1 0 -1
4 _4
wy — q V513 *3 1 ;l
31 | 3V |5




[\

1
w3—>q3:§ 1
2
We therefore set

L4 2
Q=|"% 355 3
0 _V5 2
3 3

The preceding computations tell us that

1/V5) =2(4/V5) 1 V5/3 =(V5) -(vV5/3) 1(3/2
Q:BD§/ )Egg/ )Dz/E§3 )Eég/)Dé/)y

so letting R = (D5 B3 py5/3 g(v5) g(V5/3) DB/2)=1 e have that B = QR. Explicitly,

4

100107\/51001%0\/500 \/5_%_5
R:01001_£0%0010010:01_£
2 3 V5 3

00 5/loo 10 0o 1J0o 0o 1[0 01 0 0 2

(b) Let U be the subspace of R3 spanned by v; and vy. Compute Py, the projection onto U.

Solution: Let A= [q; gq,]. Then, by the orthonormality of {q,,q,}, we see that
Py = A(ATA) AT = AAT = q,q] + q,q2
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(c) Let W be the orthogonal complement of U. What is a basis for W? Compute Py, the projection onto W.

Solution: We see that {gs} is a basis for W. Then,

PW:%‘I?T:

OO INIO W
OO0
OO INKO |

Alternatively, we could have observed that Py must equal I — Py because U and W are orthocomplements
of each other.

4. Let
-2 3 -4
T=|1 -2 3
3 -4 4

Compute det(T) by row operations, cofactor expansion, and the big formula.

Solution: We first compute the determinant of 7' by row operations:

-2 3 -4 1 -2 3 1 -2 3 1 -2 3
1 -2 3|=]1-2 3 -4 —-1/0 -1 2| —=(0 -1 2
3 -4 4 3 -4 4 0 2 =5 0 0 -1




The determinant of 7" is therefore (—1) (for the row swap done first) multiplied by 1(—1)(—1) = 1. Thus
det(T) = —1.

We next compute the determinant by cofactor expansion along the second row:

det(T) = (=1)*T1(1)(12 — 16) + (=1)*"?(=2)(=8 + 12) + (—1)*T3(3)(8 = 9) =4 — 8 + 3 = —1.

Finally, we compute the determinant by using the big formula:
det(T) = (=1)%" 1 (=2)(=2)(4) + (=1)*=" 32 (3)(3)(3) + (~1)*#"*3) (1) (—4)(~4)
(=1 (1) (3)(4) + (1) (=2)(=4)(3) + (~ 1)1 (3)(~2)(—4)
=16427+16—-12—-24 — 24 = —1.

Note that here, the determinant was the sum of the products of all the diagonals of T (reversing the signs
for diagonals of the opposite direction), but this does not work for matrices of higher dimensions (for one,
there are fewer diagonals than permutations in general).




