
Recitation 9. November 12

Focus: Singular Value Decomposition.
Recall that for a matrix A the Singular Value Decomposition (SVD) is an expression A = UΣV T where U, V are
orthogonal matrices and Σ is diagonal.
The Singular Values denoted σi are the diagonal entries of Σ.
The Pseudo-inverse of A is given in terms of the SVD by A+ = V Σ+UT where Σ+ has diagonal entries 1

σi
.

A+A and AA+ are the projections onto C(AT ) and C(A) respectively.

1. Consider the matrix

A =

[
2 2
−1 1

]
• Compute the Singular Value Decomposition of A.

• Compute the Psuedo-inverse A+. Then compute the inverse A−1 by another method. How do they compare?

Solution:

2. 1. Find the maximum of the function
3x21 + 2x1x2 + 3x22

x21 + x22

by expressing it in the form xTSx
xT x

for a symmetric matrix S and using the relation of this expression to the
eigenvalues of S. For what values of (x1, x2) is the maximum achieved?

2. Find the minimum of the function √
(x1 + 4x2)2

x21 + x22

by expressing it in the form ‖Ax‖
‖x‖ and using the relation of this expression to the singular values of A.

Solution:



3. Consider the matrix

A =

[
1 1
1 1

]
.

1. Compute its singular value decomposition

2. Use this to find the closest vector to

[
3
−1

]
in the column space of A and in the column space of AT . How

else could you compute these vectors? Do the other methods agree?

Solution:

4. 1. If A = QR is a Gram-Schmidt Orthogonalization of A (i.e. Q is an orthogonal matrix), how does the SVD
of A relate to the SVD of R?

2. If A = UΣV T is a SVD of a matrix A, and Q1, Q2 are two orthogonal matrices, how do the singular values
σi of Q1AQ

−1
2 relate to those of A?

Solution:


