Second Midterm Review Solutions

Problem 1: Consider the matrix

1 1
A=10 1
-2 0
and the vector
1
b= 10
1

(1) Find p = Ax that minimizes || Az — b||.

Solution: Note that the solution p minimizing the distance, is the orthogonal projection of b onto
V = C(A) the column space of A.

The columns of A are linearly independent, so we can use this to compute the projection matrix
Py = A(ATA)~1AT. Hence we can compute p as follows

-1 1 11 1
5 11 0 -2 12 —1][-1 17-1] 1
L2f 11 o] 9|-1 5|1 5 ool 3L2] 735

(2) Find  that minimizes || Az — b||.

Solution: Note that p = A((ATA)"1ATb), so we can use z = (AT A)~1ATb. This is unique as the
columns of A are linearly independent. Thus from the above computation

1 |—
= (ATA) 1 ATh = 3 [ 21]

Problem 2: Consider the matrix

1 2
1 2
A= -1 =3
-1 =3

(1) Use Gram-Schmidt to find the factorization A = QR.

Solution: Denote by v; and vy the 2 columns of A. First we rescale vy to get:

1
v 11
D= o]l ~ 2 |1

-1



Now we get an orthogonal vector to g1 by

-1

1]1-1

G =va = (q-v2)qu = w2 =5q1 =5 | _]
-1

Note this vector is already normalized, so ga = ¢5. These operations can be writen as

1/2 0 -5
Q:A[é 1]E§2)

So we can rewrite

1 -1
_Ap® (2 0 _ 1)1 —1]]2 5
A=QEn, [0 1]_2 -1 -1 |0 1
-1 -1
(2) Check that the matrix in (1) satisfies QTQ = I
Solution:
1 -1
If1r 1 -1 —-1{1}|1 -1
T = — — =
QQ—2[—1 - -1 —1]2 BN B
-1 -1
Problem 3: Consider the linear transformation
¢:R® - R?

such that:
o ¢(e1) =3e1 + leg
o o(ez) = 2¢e
o ¢es) =e1 + e
Here recall that we denote by e; the standard basis.

(1) Find the matrix A of ¢ with respect to the standard basis.

Solution: The above equations give us exactly the first second and third columns of the matrix A
respectively, so we get

3 2 1
A= [1 0 1]
1 0 1
(2)Let vy =0 |[,vo=| 1| and v3 = |—1]| and let w1 = ¢(v1) and we = ¢(ve). What is the
-1 —1 —1

matrix B of ¢ with respect to the bases {v;} and {w;}.



Solution:

3 21 2
wy = ¢(v1) = Avy = [1 0 1} _01 = [O]
0
3 2 1 1
wecr=meft 1 [1] L2
Further we compute
1
3 21
d(v3) = Avg = L 0 1] 1| =0
—1
Consider the change of basis formula B = W~1AV for
1 0 1
V=10 1 -1
-1 -1 -1
2 1
vl
So we compute
1 (1/2 1/2
e
So we get
R {100
B=WTAV = [0 1 0

Note that this makes sense as ¢(v1) = wi, ¢(v2) = we and ¢(v3) = 0.

Problem 4: Consider the matrix
e b
e d
(1) Find the determinant using the cofactor formula along the first row.

Solution: We compute the required cofactors first
C11 = (—1)%det(Mn1) = det([d]) = d

012 == (—1)3d6t(M12) == det([c]) = —C

So the cofactor formula becomes
det(A) = aCyy + bC1a = ad — be

(2) Find the determinant using the cofactor formula along the second row.

Solution: We compute the required cofactors first

Cy1 = (—1)3det(My,) = det([b]) = —b



O = (—1)*det(Maz) = det([a]) = a
So the cofactor formula becomes
det(A) = cCa1 + aCaa = —bc + ad

(3) Use Cramer’s rule to find the inverse of the above matrix.

Solution: Note that from the above computations we have computed all cofactors, so we can put

them in the cofactor matrix
X — Ci11 Cyr i d -b
T |Ci2 Cea|l  |—c a

Thus we get the inverse is given by

1 1 d —b
Al = X =
det(A) ad — bc [—c a }

Problem 5: Consider the matrix

)
TN
g~ N

(1) Use the cofactor formula to compute the determinant.

Solution: We expand along th first row as this has a zero. We hence have
det(A) :0*011+1*012+2*013:—(7—3)+2<5—6) =—6

(2) Use row operations to compute the determinant.

Solution: We first do Gaussian elimination. Note that to start we need to swap the first 2 rows,

1 2 1 1 2 1 1 21
A~ [0 1 2]~ |0 1 2| ~]0 1 2
3 5 7 0 -1 4 0 0 6

Note that here we have only swapped rows once, so we get

det(A) = —det(

S O =
O = N
DN =

~—

I

|

D

Here we use the determinant of upper triangular matrices is the product of diagonal entries
(3) Use the large 3! formula to compute the determinant.

Solution: We write all the terms of the formula to get

det(A) =0%2+ T+ 15143 +2%1%5—-0%x1%5—-1%x1*%*7—2%2%x3=0+34+10-0-7—-12=—6



Problem 6 Consider the matrix

1 0 0
A=12 -1 0
-1 -1 3

(1) Compute the eigenvalues of the matrix.

Solution: Recall that to consider the eigenvalues we need to consider the zeroes of det(A — AI),
SO we compute

1-A 0 0
det(A— M) =det(| 2 —1-X 0 |)=1-N(-1-NEB-N
-1 -1 3—A

Here again we use the determinant of a lower triangular matrix is the product of the diagonal
entries.
Thus from the above we see that the zeroes of the above are given by Ay =1, Ay = —1 and A3 = 3

(2) Compute eigenvectors for the above eigenvalues. Is there an eigenvector that is particularly
easy”?

Solution: First we compute the eigenvector of Ay = 1, ie we need to find elements in the nullspace
of

0 0 0
A-TI=|2 =20
-1 -1 2
1
Note that the sum of the rows are 0, so we get an eigenvector |1|.
1
Now we compute the eigenvector of A\a = —1, so we need to find elements in the nullspace of
2 0 0
A+I=1(2 0 0
-1 -1 4
0
Here we can get an eigenvector |4|.
1
Finally we compute the eigenvector of A3 = 3, so we need to find elements in the nullspace of
-2 0 0
A-3I=]2 -4 0
-1 -1 0
0
Note that the last colomn is 0, so we get an eigenvector |[0|. Note that this eigenvector always
1

works for a lower triangular matrix.



