
Recitation 11. November 26

Focus: random variables, principal component analysis (PCA)

A random variable is a quantity X that takes values in R. It can be discrete, meaning that it takes only count-
ably many possible values xi each with probability pi, or continuous, in which case it is associated to a probability
distribution p(x) (where p : R→ R).

The mean (or expected value) E[X] of X is the sum
∑

i xipi if X is discrete and the integral
∫∞
−∞ xp(x) dx if

X is continuous. If Y is another random variable, and a, b ∈ R, then E[aX + bY ] = aE[X] + bE[Y ] (so the mean
obeys this linearity property). The variance Σ = ΣXX of a random variable X is E[(X −µ)2] = E[(X −E[X])2].
The covariance ΣXY of two random variables X and Y is E[(X − E[X])(Y − E[Y ])].

Given n random variables X1, . . . , Xn, we may assemble them into a vector X =

X1

...
Xn

, called a random vector .

The covariance matrix of these random variables X1, . . . , Xn is the matrixΣX1X1
· · · ΣX1Xn

...
. . .

...
ΣXnX1

· · · ΣXnXn

 = E[(X − µ)(X − µ)T ],

where µ =

µ1

...
µn

 is the vector of means.

1. Sample from the numbers 1 to 1000 with equal probabilities 1/1000, and look at the last digit of the sample,
squared. This square can end with X = 0, 1, 4, 5, 6, or 9. What are the probabilities p0, p1, p4, p5, p6 and p9?
Compute the mean and variance of X.

Solution: If n = 10k, then the last digit of n2 will be 0. If n = 10k + 1 or n = 10k + 9, then the last
digit of n2 will be 1. If n = 10k + 2 or n = 10k + 8, then the last digit of n2 will be 4. If n = 10k + 3 or
n = 10k+ 7, then the last digit of n2 will be 9. If n = 10k+ 4 or n = 10k+ 6, then the last digit of n2 will
be 6. If n = 10k + 5, then the last digit of n2 will be 5. Thus,

p0 =
1

10
; p1 =

1

5
; p4 =

1

5
; p5 =

1

10
; p6 =

1

5
; p9 =

1

5
.

We therefore see that the mean is

0 · 1

10
+ 1 · 1

5
+ 4 · 1

5
+ 5 · 1

10
+ 6 · 1

5
+ 9 · 1

5
=

9

2
,

and the variance

E[(X − 9

2
)2] =

(
02 · 1

10
+ 12 · 1

5
+ 42 · 1

5
+ 52 · 1

10
+ 62 · 1

5
+ 92 · 1

5

)
−
(

9

2

)2

=
293

10
− 81

4
=

181

20
.

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local

shelter, respectively. Suppose the random vector

AH
W

 takes two values,

 7
20
132

 and

 4
24
120

 with probabilities

p and 1− p respectively. Compute the covariance matrix of A, H, and W .



Solution: Let µA = 7p+4(1−p) = 3p+4, µH = 20p+24(1−p) = 24−4p, and µW = 132p+120(1−p) =
12p+ 120, the means of the random variables. Then,

ΣAA = E[(A−µA)2] = (49p+16(1−p))− (3p+4)2 = (33p+16)− (9p2 +24p+16) = −9p2 +9p = 9p(1−p)

Similarly,

ΣHH = (400p+ 576(1− p))− (24− 4p)2 = (−176p+ 576)− (576− 192p+ 16p2) = 16p(1− p)

and
ΣWW = (120− 132)2p(1− p) = 144p(1− p).

Now,

ΣAH = E[(A−µA)(H−µH)] = E[AH]−µHE[A]−µAE[H]+µAµH = (7−4)(20−24)p(1−p) = −12p(1−p)

and then similarly
ΣAW = (7− 4)(132− 120)p(1− p) = 36p(1− p)

and
ΣHW = (20− 24)(132− 120)p(1− p) = −48p(1− p).

Thus the covariance matrix is

p(1− p)

 9 −12 36
−12 16 −48
36 −48 144

 .

3. Suppose now that the random variables A,H,W from above instead have the covariance matrix

K =

 3 −1 2
−1 3 −2
2 −2 6

 .
Find three linear combinations of A,H,W which are pairwise independent random variables. What is the
variance of each?

Solution: We begin by diagonalizing K. Its characteristic polynomial is

pK(λ) = (3− λ)((3− λ)(6− λ)− 4) + ((−1)(6− λ) + 4) + 2(2− 2(3− λ)) = (2− λ)2(8− λ),

so the eigenvalues of K are 2 (with multiplicity 2) and 8. We now find a basis of eigenvectors: We have
that

K − 8I =

−5 −1 2
−1 −5 −2
2 −2 −2

 ,
from which we can spot

 1
−1
2

 as a vector spanning its null space. Thus, 1√
6

 1
−1
2

 is an eigenvector (of

norm 1) of K corresponding to eigenvalue 8.

Similarly, we have that

K − 2I =

 1 −1 2
−1 1 −2
2 −2 4

 ,
from which we can spot

1
1
0

 and

−1
1
1

 as vectors spanning its null space; moreover, these vectors are

orthogonal. (In this case, it was fairly easy to find a pair of orthogonal vectors spanning the null space



by inspection, but in general you can always row reduce to find a basis for the null space and then apply

Gram-Schmidt.) Thus, we have that 1√
2

1
1
0

 and 1√
3

−1
1
1

 form an orthonormal basis for the eigenspace

for eigenvalue 2.

We therefore have that

K =


1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


8 0 0

0 2 0
0 0 2




1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


T

=


1√
6

1√
2
− 1√

3

− 1√
6

1√
2

1√
3

2√
6

0 1√
3


8 0 0

0 2 0
0 0 2




1√
6
− 1√

6
2√
6

1√
2

1√
2

0

− 1√
3

1√
3

1√
3

 .
Therefore, the random vector

1√
6
− 1√

6
2√
6

1√
2

1√
2

0

− 1√
3

1√
3

1√
3


AH
W

 =


1√
6
A− 1√

6
H + 2√

6
W

1√
2
A+ 1√

2
H

− 1√
3
A+ 1√

3
H + 1√

3
W


consists of random variables which are pairwise independent (see p.94 of the lecture notes, for instance).
Their variances are, respectively, 8, 2 and 2.

This process is known as principal component analysis. Note that because the covariance matrix in #2
has rank 2, it has 0 as an eigenvalue. Therefore, by a similar analysis we find that there must be a linear
combination in that case of A,H,W which has variance 0, i.e. it is a constant.

4. Let X be a random variable. Suppose the mean E[X] = µ and the variance ΣXX = σ2. Compute E[X2] in
terms of µ and σ.

Solution: We have by definition that

ΣXX = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + µ2E[1] = E[X2]− 2µ2 + µ2 = E[X2]− µ2,

so E[X2] = σ2 + µ2.


