Recitation 7. October 29

Focus: Determinants and inverses, eignevalues and eigenvectors

The **cofactors** C_{ij} of a square matrix A are given by $C_{ij} = (-1)^{i+j} det(M_{ij})$, where M_{ij} is the matrix given by removing the ith row and jth column of A. We can put these into the cofactor matrix X by $X_{ij} = C_{ji}$. We can compute the inverse using this matrix by $A^{-1} = \frac{1}{\det(A)}X$. Using this we can also find a solution to Ax = b, by computing the entries of x, by $x_i = \frac{\det(B_i)}{\det(A)}$. Here B_i is given by replacing the ith column of A with the vector b

The *eigenvectors* of a square matrix A is a non-zero vector \mathbf{v} that satisfies an equation $A\mathbf{v} = \lambda \mathbf{v}$ for some λ . In the above equation if you have an eigenvector the scalar λ is known as an **eigenvalue** of A. These can be computed by computing the zeroes of the equation $det(A - \lambda I)$.

1. Use the cofactor formula to invert the following matrices

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 5 \end{bmatrix}$$

Solution:		

2. Use Cramer's rule to solve the following equations

$$ax + by = 0$$

$$cx + dy = 1$$

$$x + 3y - z = 0$$

$$x + y + 4z = 0$$

$$x + z = 1$$

Solution:

3. a)Find the eigenvalues and eigenvectors of the following matrix

$$A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$

Let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation given by $v \mapsto Av$. Can you find a basis $\mathbf{v}_1, \mathbf{v}_2$ with respect to which, ϕ is given by a diagonal matrix?

b) Do the same for the matrix

$$B = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

Solution:		

4. a) Let A be an $n \times n$ matrix and let X be the cofactor matrix. Find a formula for det(X) in terms of A b) If A has an eigenvector \mathbf{v} , with eigenvalues λ , ie $A\mathbf{v} = \lambda \mathbf{v}$, show that B = A - 7I also has \mathbf{v} as an eigenvector. What is its eigenvalue?

Solution: