
Recitation 6. October 22

Focus: linear transformations and matrix representations, determinants

A linear transformation is a map φ : Rn → Rm such that for any v,w ∈ Rn and α ∈ R,

φ(v + w) = φ(v) + φ(w) and φ(αv) = αφ(v).

A linear transformation φ can be expressed as a matrix A, with respect to given bases {v1, . . . ,vn} of Rn and
{w1, . . . ,wm} of Rm: the (i, j) entries aij of A are such that φ(vk) = a1kw1 + · · ·+ amkwm.

The determinant of an n × n matrix A is the factor by which the linear map v 7→ Av scales volumes of regions in
Rn; it is denoted detA.

1. Determine whether the following maps are linear. If so, find a matrix representation of the map in terms of the

standard basis of R3, and then find a matrix representation in terms of the basis

{ 1
−1
0

 ,
 0

1
−1

 ,
1

0
1

}.

(a) φ

(xy
z

) =

 x+ y + z
x2 + y2 + z2

0

.

(b) Let a =

 1√
2
1√
2

0

 ∈ R3, and define ψ(v) = (a · v)a.

(c) σ

(xy
z

) =

x− y − zx+ 2y
y − 3z

.

Solution:

(a) φ is not linear. For instance, φ

(0
2
0

) =

2
4
0

 but 2φ

(0
1
0

) =

2
2
0

 .
(b) ψ is linear. Indeed, for any v,w ∈ R3 and α, β ∈ R, we have

ψ(αv + βw) =
(
a · (αv + βw)

)
a =

(
α(a · v) + β(a ·w)

)
a = α(a · v)v + β(a ·w) = αφ(v) + βφ(w).

In terms of the standard basis, the matrix representation is

X =

 1
2

1
2 0

1
2

1
2 0

0 0 0

 .
(c) σ is linear. Indeed, clearly

σ

(xy
z

) =

1 −1 −1
1 2 0
0 1 −3

xy
z

 ,
so by the linearity of matrix multiplication σ is linear. Moreover, we see that Y =

1 −1 −1
1 2 0
0 1 −3

 is therefore

also the matrix representation of σ in terms of the standard basis.

To find the matrix representations of (b) and (c) in terms of the basis

{ 1
−1
0

 ,
 0

1
−1

 ,
1

0
1

}, consider

A =

 1 0 1
−1 1 0
0 −1 1

 .



We can compute that

A−1 =
1

2

1 −1 −1
1 1 −1
1 1 1

 .
Then in terms of

{ 1
−1
0

 ,
 0

1
−1

 ,
1

0
1

}, ψ is A−1XA and σ is A−1Y A. Explicitly,

A−1XA =
1

4

1 −1 −1
1 1 −1
1 1 1

1 1 0
1 1 0
0 0 0

 1 0 1
−1 1 0
0 −1 1

 =
1

2

0 0 0
1 1 0
1 1 0

 1 0 1
−1 1 0
0 −1 1

 =

0 0 0
0 1

2
1
2

0 1
2

1
2


and

A−1Y A =
1

2

1 −1 −1
1 1 −1
1 1 1

1 −1 −1
1 2 0
0 1 −3

 1 0 1
−1 1 0
0 −1 1

 =
1

2

1 −1 −1
1 1 −1
1 1 1

 2 0 0
−1 2 1
−1 4 −3

 =

2 −3 1
1 −1 2
0 3 −1

 .

2. Compute the determinant of

M =


0 0 2 −1
0 0 −4 −2
1 3 −1 2
−1 3 0 5


by using row operations.

Solution: We first swap the first and third rows, and then the second and fourth rows to arrive at the matrix

M ′ =


1 3 −1 2
−1 3 0 5
0 0 2 −1
0 0 −4 −2

 .
Therefore detM = (−1)2 detM ′ = detM ′. We now perform elimination operations on M ′:

1 3 −1 2
−1 3 0 5
0 0 2 −1
0 0 −4 −2

→


1 3 −1 2
0 6 −1 7
0 0 2 −1
0 0 −4 −2

→


1 3 −1 2
0 6 −1 7
0 0 2 −1
0 0 0 −4

 ,
which shows det(M ′) = 1 · 6 · 2 · (−4) = −48. Thus detM = −48. Note that

detM = det

([
1 3
−1 3

])
det

([
2 −1
−4 −2

])
.

Indeed, it is true in general (and can be seen by row operation, for instance) that if a matrix is of the form[
A B
0 C

]
, then its determinant is det(A) det(C).

3. Compute the determinant of

B =


1 2 −1 0
3 −2 0 5
−2 0 −2 1
1 0 −1 4


by doing a cofactor expansion along its second row.



Solution: We have that detB equals

(−1)2+1 · 3 det

(2 −1 0
0 −2 1
0 −1 4

)+ (−1)2+2 · (−2) det

( 1 −1 0
−2 −2 1
1 −1 4

)+ (−1)2+4 · 5 det

( 1 2 −1
−2 0 −2
1 0 −1

) =

−3(2((−2)(4)−(−1)))−2
(
((−2)(4)−(−1))+((−2)(4)−1)

)
+5((−1)(2)((−2)(−1)−(−2))) = 42+32−40 = 34.

So, detB = 34.


