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1. (15 points in total. Each part is worth 3 points.)

Are the following statements below TRUE or FALSE? Give a brief reason

(a) If all the entries of a square matrix A are positive, then A~ exists
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(b) If Q is an orthogonal matrix, then det(Q
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(c) If A=UXVT is the SVD of a square matrix A4, then A+ I =U(S+ VT is necessarily
the SVD of A + I. Here I is the identity matrix.

TALSE

o -l L bt A+T has a
A= [’ ] ‘\m cmcauxw ‘*Zi i@ j P
o vaws i o ;'ij(ar vadi
wo*’ L2
(d) Let A be a real square matrix. If z is in N(A) and y is in C(AT), then £ y=0.
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(e) If A and B are diagonalizable matrices, then [gl g} is diagonalizable.
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2. (10 points in total. Each part is worth 5 points.)
Let A be an m x n matrix with m > n and rank(4) =r < n.

(a) On the figure below finish off labelling the four subspaces C(A4), C(AT), N(A), and
N(AT). Also give the dimension of each vector space.

(b) Calculate a singular value decomposition (SVD) of
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(15 points in total. (a) is worth 8, (b) is worth 3, and (c) is worth 4 points.)

(a) Calculate the reduced row echelon form of A and then give bases for C(A) and N(A),

where A is the matrix
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(b) Construct a 3 x 3 matrix such that the null space is spanned by- [1 2 1]
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column space is spanned by [1 1 1]T and [1 2 1] .
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(c) How many solutions (0, 1, or co) does Az = b have? Please put your answers into the
table below.

N(A) = {0} N(A) # {0}
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4. (5 points total)

If A is a square matrix, then write down five conditions equivalent to the invertibility of A.
Here are two (that do not count towards your five):

e There exists a matrix B such that AB=BA =1
o det(A) #0
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5. (10 points total. Each part is worth 5 points)

(a) Here is a diagram of two coupled springs:

which are governed by the differential equations
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By setting v; = 7t and vp = 2,

g fill in the following 4 x 4 matrix:
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(b) You are told that the two masses in (a) oscillate with a constant amplitude forever, what
do you know about the eigenvalues of the 4 x 4 matrix A? Give a reason.
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6. (10 points total. (a) is worth 8 and (b) is worth 2 points)

(a) Consider the following directed graph:
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7. (10 points total. Each part is worth 5 points)

(a) Find the least squares fit line y = ¢ + dx to the following three data points:
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(b) Let A be a matrix with linearly independent columns and consider the projection matrix
P = A(ATA)~'AT. What are the possible eigenvalues for P? Give reasons.
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8. (10 points total. (a) is worth 7 and (b) is worth 3 points)

(a) Find a lower triangular matrix L and an upper triangular matrix U such that A = LU,

where
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(b) Let A be a symmetric positive definite matrix. Which one of the tests for a symmet-
ric positive definite matrix directly guarantees that A = LU, i.e., elimination never has a
temporary or complete failure? You must give a reason for credit.
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9. (15 points total. (a) is worth 8 and (b) is worth 7 points)

(a) Find the eigenvalue decomposition of A and calculate 42015 where

A:[fl _ﬂ.
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(b) Let T be the transformation
T : { polynomials of degree <4} — { polynomials of degree < 4 },
. dp
Tp)=(x—-1)—.
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Show that 7" is a linear transformation and write down a matrix representing T' with basis
{1,z,22, 23, 2*} for the input and output spaces.
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