

18.06 Final Exam Lecturer: Townsend 15th December, 2015

Yo	ur PRI	NT	ED	name is	g:				
Ple	ease CII	RC.	LE	your sec	etion:	Grading	1:		
							2:		
	R01	Т	9	E17-128	Miriam Farber		3:		
	R02	\mathbf{T}	10	38-166	Sam Raskin		4:		
	R03	\mathbf{T}	10	E17-128	Miriam Farber		1.		
-1.	R04	\mathbf{T}	11	38-166	Sam Raskin		5:		
	R05	\mathbf{T}	12	E17-133	Nate Harman		6:		
	R06	\mathbf{T}	1	E17-139	Tanya Khovanova				
	R07	\mathbf{T}	2	E17-133	Tanya Khovanova		7:		
	R08	\mathbf{T}	2	38-166	Zach Abel				
	R09	\mathbf{T}	3	38-166	Zach Abel	1 17	8:		
				. 2, 1			9:		

Good luck! Hope you enjoyed 18.06.

Alex

1. (15 points in total. Each part is worth 3 points.)

Are the following statements below TRUE or FALSE? Give a brief reason.

(a) If all the entries of a square matrix A are positive, then A^{-1} exists.

FALSE

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(b) If Q is an orthogonal matrix, then $det(Q) = \pm 1$.

TRUE $\int_{a}^{a} \int_{a}^{b} dt = \det(a)^{2} = \det(a)^{2} = \det(a)^{2}$

(c) If $A = U\Sigma V^T$ is the SVD of a square matrix A, then $A + I = U(\Sigma + I)V^T$ is necessarily the SVD of A + I. Here I is the identity matrix.

FALSE

(d) Let A be a real square matrix. If \underline{x} is in N(A) and \underline{y} is in $C(A^T)$, then $\underline{x}^T\underline{y}=0$.

TRUE. IF YEC(AT) then y=ATZ

50
$$x^Ty = x^T A^T Z = (Ax)^T Z = Q^T Z = Q$$

(e) If A and B are diagonalizable matrices, then $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ is diagonalizable.

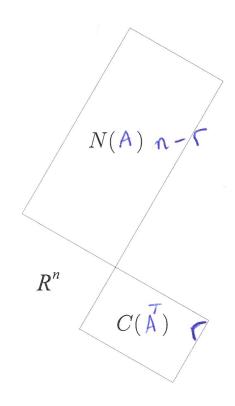
Let A = SAAASA and B = SBABSB.

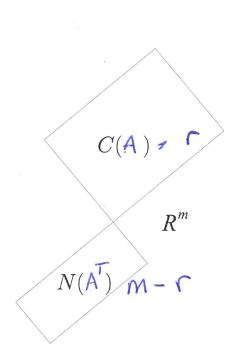
Then
$$\begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{bmatrix} S_A & G \\ O & S_B \end{bmatrix} \begin{bmatrix} \Lambda_A & O \\ O & \Lambda_B \end{bmatrix} \begin{bmatrix} S_A \\ S_B \end{bmatrix}$$

2. (10 points in total. Each part is worth 5 points.)

Let A be an $m \times n$ matrix with $m \ge n$ and rank(A) = r < n.

(a) On the figure below finish off labelling the four subspaces C(A), $C(A^T)$, N(A), and $N(A^T)$. Also give the dimension of each vector space.





(b) Calculate a singular value decomposition (SVD) of

$$A^{T}A = \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} +4 & 0 \\ 0 & 1 \end{bmatrix} :$$

$$AA^{T} = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} +14 & 0 \\ 0 & 1 \end{bmatrix} \qquad : \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \qquad AV = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad AV = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad So \qquad U = \begin{bmatrix} 0 & +1 \\ -4 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- 3. (15 points in total. (a) is worth 8, (b) is worth 3, and (c) is worth 4 points.)
- (a) Calculate the reduced row echelon form of A and then give bases for C(A) and N(A), where A is the matrix

$$A = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 6 & 6 & 3 & 2 \\ 0 & -3 & 0 & -1 \end{bmatrix}.$$

$$(A) = \operatorname{Span} \left\{ \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix}, \begin{bmatrix} 8 \\ 6 \\ -3 \end{bmatrix} \right\}$$

$$N(A) = Spax \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

(b) Construct a 3×3 matrix such that the null space is spanned by $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$ and the column space is spanned by $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$.

$$A = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 2 & -5 \end{bmatrix}$$
Fixes C(A) so that
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \in N(A)$$

(c) How many solutions $(0, 1, or \infty)$ does $A\underline{x} = \underline{b}$ have? Please put your answers into the table below.

	$N(A) = \{\underline{0}\}$	$N(A) \neq \{\underline{0}\}$
\underline{b} is in $C(A)$	1	∞
\underline{b} is not in $C(A)$	0	0

4. (5 points total)

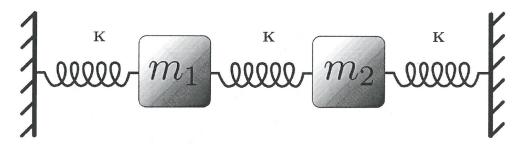
If A is a square matrix, then write down five conditions equivalent to the invertibility of A. Here are two (that do not count towards your five):

- There exists a matrix B such that AB = BA = I
- $\det(A) \neq 0$

possible answers here; Many

- · No Zero eigenvalue · No Zero singularvalue
- All non pivots are non-zero
- · ATA is tre def.
- $N(A) = \{0\}$
- $((A) = R^n, n = \# cols of A$

- 5. (10 points total. Each part is worth 5 points)
- (a) Here is a diagram of two coupled springs:



which are governed by the differential equations

$$m_1 \frac{d^2 u_1}{dt^2} = -2Ku_1(t) + Ku_2(t)$$

$$m_2 \frac{d^2 u_2}{dt^2} = Ku_1(t) - 2Ku_2(t).$$

By setting $v_1 = \frac{du_1}{dt}$ and $v_2 = \frac{du_2}{dt}$, fill in the following 4×4 matrix:

$$\begin{bmatrix} \frac{du_1}{dt} \\ \frac{dv_1}{dt} \\ \frac{du_2}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{2k}{m_1} & 0 & \frac{k}{m_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{m_2} & 0 & \frac{2k}{m_2} & 0 \end{bmatrix}}_{=A} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix}.$$

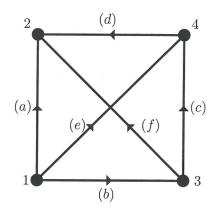
(b) You are told that the two masses in (a) oscillate with a constant amplitude forever, what do you know about the eigenvalues of the 4×4 matrix A? Give a reason.

(well, at teast the eigenvalues corresponding to excited eigenvectors).

Thes is because solution is

u(t) = e At u(0) = c, e lit v, + ... + che lyt v4

- 6. (10 points total. (a) is worth 8 and (b) is worth 2 points)
- (a) Consider the following directed graph:



Write down the associated incidence matrix A, and give a basis for $N(A^T)$.

$$A = (a) \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ (b) & -1 & 0 & 1 & 0 \\ (c) & 0 & 0 & -1 & 1 \\ (d) & 0 & 1 & 0 & -1 \\ (e) & -1 & 0 & 0 & 1 \\ (f) & 0 & 0 & -1 & 1 \end{bmatrix}$$

Independent Loops:

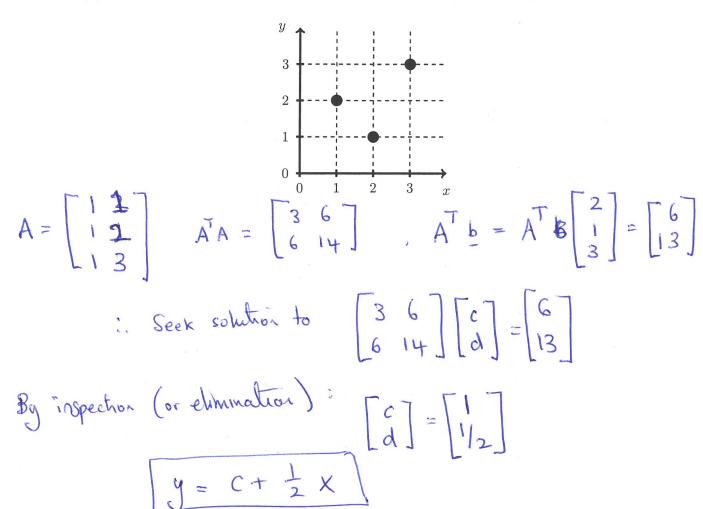
$$N(A^T) = Span \left(\begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right)$$

(b) Find the determinant of the following incidence matrix:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$$

$$\det(A) = 0 , \qquad N(A) = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$$
so A is not invertible

- 7. (10 points total. Each part is worth 5 points)
- (a) Find the least squares fit line y = c + dx to the following three data points:



(b) Let A be a matrix with linearly independent columns and consider the projection matrix $P = A(A^TA)^{-1}A^T$. What are the possible eigenvalues for P? Give reasons.

Possible eigenvalues are 0 and 1.

Since
$$P^2 = P$$
, $P_v = \lambda v \rightarrow P^2 v = \lambda v = \lambda^2 v$

$$\lambda^2 = \lambda \Rightarrow \lambda = 0, 1.$$

- 8. (10 points total. (a) is worth 7 and (b) is worth 3 points)
- (a) Find a lower triangular matrix L and an upper triangular matrix U such that A = LU, where

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 4 & 1 & -3 \\ 0 & 3 & 2 \end{bmatrix}.$$

$$\begin{bmatrix}
2 & 1 & -1 \\
4 & 1 & -3 \\
0 & 3 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 1 & -1 \\
0 & -1 & -1 \\
0 & 3 & 2
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
2 & 1 & -1 \\
0 & 3 & 2
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
2 & 1 & -1 \\
0 & -1 & -1 \\
0 & 0 & 5-1
\end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

(b) Let A be a symmetric positive definite matrix. Which one of the tests for a symmetric positive definite matrix directly guarantees that A = LU, i.e., elimination never has a temporary or complete failure? You must give a reason for credit.

- 9. (15 points total. (a) is worth 8 and (b) is worth 7 points)
- (a) Find the eigenvalue decomposition of A and calculate A^{2015} , where

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}.$$

$$def(A - \lambda T) = def \begin{bmatrix} 2 - \lambda & -3 \\ -1 & 4 - \lambda \end{bmatrix} = (2 - \lambda)(\mu - \lambda) = 3$$

$$= \lambda^2 - 6\lambda + 45$$

$$= (\lambda - 1)(\lambda = 5)$$

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ -1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3$$

(b) Let T be the transformation

 $T: \{ \text{ polynomials of degree } \leq 4 \} \rightarrow \{ \text{ polynomials of degree } \leq 4 \},$

$$T(p) = (x-1)\frac{dp}{dx}.$$

Show that T is a linear transformation and write down a matrix representing T with basis $\{1, x, x^2, x^3, x^4\}$ for the input and output spaces.

$$T(1) = 0, T(x) = (x-1), T(x^{2}) = 2x^{2}-2x$$

$$T(x^{3}) = 3x^{3}-3x^{2}, T(x^{4}) = 4x^{4}-4x^{3}$$

$$A = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 2 & -3 & 0 \\ 0 & 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & 0 & +4 \end{bmatrix}$$
11