SOLUTIONS

18.06 Exam III				I 1	Lecturer: Towns	end 2nd December	, 2015
Y	our PRI	NT	ED	name is	S:		ngikalan dingingan pakalan dingingan pangan pan
Dì	longo CI	BC.	T T	your sec	etion:		
1 1	icase O1	πO.	, W	your sec	Colon.	Grading 1:	
ſ	R01	Т	9	E17-128	Miriam Farber		
	R02	\mathbf{T}	10	38-166	Sam Raskin	2:	
	R03	\mathbf{T}	10	E17-128	Miriam Farber		
	R04	\mathbf{T}	11	38-166	Sam Raskin	3:	
	R05	\mathbf{T}	12	E17-133	Nate Harman	Ų.	
	R06	T	1	E17-139	Tanya Khovanova		
	R07	\mathbf{T}	2	E17-133	Tanya Khovanova	4:	
	R08	\mathbf{T}	2	38-166	Zach Abel		

Zach Abel

R09 T 3 38-166

1. (20 points in total. Each part is worth 5 points.)

Are the following statements below TRUE or FALSE? Give a brief reason.

(a) If A is invertible and λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

TRUE if $Ax = \lambda x$ then $x = \lambda A^{-1}x$ and $A^{-1}x = \frac{1}{\lambda}x$.

(b) If A is a positive definite matrix, then $A^T + I$ is also a positive definite matrix.

TRUE

16 A is the def, then so is AT,

AT + I is exerchas eigenvalues of AT shifted by + 1.

(c) The following matrix is positive definite:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

FALSE. Fails det test

1x1 det = 2

2x2 det = 3

3x3 det = -2

(d) Let A be a real skew-symmetric $n \times n$ matrix, i.e., $A^T = -A$. If λ is an eigenvalue of A, then so is $-\lambda$.

TRIE $0 = \det(A - \lambda I) = \det((A - \lambda I)^T) = \det(A^T - \lambda I) = \det(-A - \lambda I)$ $= (-1)^n \det(A + \lambda I)$

- 2. (20 points in total. Each part is worth 10 points.)
- (a) Calculate e^{At} , where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

$$e^{At} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

$$A^{k} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

$$e^{At} = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \left[\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \right] = \left[\begin{bmatrix} e^{t} & te^{t} \\ 0 & e^{t} \end{bmatrix} \right]$$

(b) Using your answer from part (a), solve the system of differential equations:

$$\frac{du}{dt} = u(t) + v(t),$$

$$\frac{dv}{dt} = 0u(t) + v(t),$$

where u(1) = 1 and v(1) = 0.

Warning: You have been given conditions u(1) = 1 and v(1) = 0 that are **not** at t = 0. Adjust your solution accordingly.

$$\begin{bmatrix} u \\ v \end{bmatrix} = e^{A(t-1)} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$e^{A(k-1)} = \begin{bmatrix} e^{t-1} & (t-1)e^{t-1} \\ 0 & e^{t-1} \end{bmatrix}$$

$$\vdots \quad \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} e^{t-1} \\ 0 \end{bmatrix}$$

Happy for them
to spot this
solution with
part a)

- 3. (30 points total. Each part is worth 10 points)
- (a) Consider the transformation

 $T: \{ \text{ polynomials of degree} \leq n \} \rightarrow \mathbb{R}$

given by

$$T(p) = \int_{0}^{1} p(s)ds.$$

Show that T is a linear transformation.

$$T(cp) = \int_{0}^{1} cp(s) ds = c \int_{0}^{1} p(s) ds = cT(p)$$

$$T(p+q) = \int_{0}^{1} (p+q)(s) ds = \int_{0}^{1} p(s) ds + \int_{0}^{1} q(s) ds$$

$$= T(p) + T(q)$$

(b) For the linear transformation T from part (a), you are given the relation

$$T(x^k) = \int_{0}^{1} x^k dx = \frac{1}{k+1}, \qquad k \ge 0.$$

Pick a basis for the input space, a basis for the output space, and find the corresponding matrix that represents T.

Input space basis:
$$\{1, x, ..., x^n\}$$
Output space basis: $\{1\}$

$$T(x^k) = \frac{1}{k+1}$$

$$A = \begin{bmatrix} 1 & \frac{4}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{n+1} \end{bmatrix}$$

(c) Let A be a 2×2 matrix such that

$$A \begin{bmatrix} a \\ b \end{bmatrix} = 2 \begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} c \\ d \end{bmatrix}, \quad A \begin{bmatrix} c \\ d \end{bmatrix} = 2 \begin{bmatrix} a \\ b \end{bmatrix} + 2 \begin{bmatrix} c \\ d \end{bmatrix},$$

where a, b, c, and d are real numbers.

Are A and $\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$ similar? Give a condition on a, b, c, and d, if necessary.

$$A\begin{bmatrix} c & a \\ d & b \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} c & a \\ d & a \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} c & q \\ d & b \end{bmatrix}^{-1}$$
assuming ad-bc $\neq 0$

- 4. (30 points total. Each part is worth 10 points)
- (a) Here is a flowchart for the status of the MIT exam printing machine:

The fractions on the arrows indicate the probability that the machine moves from one particular state to another.

- (i) Define the term Markov matrix.
- (ii) Why does a Markov matrix always have 1 as an eigenvalue?
- (iii) Write down the Markov matrix associated to the flowchart above.
- A = nxn matrix is Markov if (1)
 -) Cotamo Entries in each column sum to 1) Nonnegative entries.
- []=[]] so rigervalue of AT is I and A and AT have the same eigenvalues.
- (17) $A = \begin{bmatrix} 1/3 & 1/3 & 1 \\ 2/3 & 1/3 & 0 \\ 0 & 1/2 & 0 \end{bmatrix}$

(b) The printer is upgraded. The associated Markov matrix is now:

$$A = \begin{bmatrix} 1/2 & 3/4 & 1 \\ 0 & 1/4 & 0 \\ 1/2 & 0 & 0 \end{bmatrix}.$$

In the long-run what proportion of time is the printer in each state assuming the printer starts off working?

We just need the

eigenvector corresponding to eigenvalue I:

$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ \overline{z} \end{bmatrix}$$

$$-\frac{1}{2}x + \frac{3}{4}y + \overline{z} = 0$$

$$-\frac{3}{4}y = 0$$

$$\frac{1}{2}x - \overline{z} = 0$$

$$y = 0, Z = 1, X = 2$$

So rigenvector is 0

The printer spends twice as long in State 1 as State 3 m the long-run. It spends one time in State 2.

(c) For a standard color inkjet printer, the associated Markov matrix A has eigenvalues $\lambda_1, \lambda_2, \lambda_3$ and linear independent eigenvectors $\underline{v}_1, \underline{v}_2, \underline{v}_3$, where $\lambda_1 = 1$, $\lambda_2 = -1$, and $|\lambda_3| < 1$. What is the long-run behavior of the printer?

$$X_0 = c_1 V_1 + c_2 V_2 + c_3 V_3$$

then $A^{k}x_{0} = c_{1}\lambda_{1}^{k}y_{1} + c_{2}\lambda_{2}^{k}y_{2} + c_{3}\lambda_{3}^{k}y_{3}$

For large k: Akxo x c, v, + c2(-1) x v2.

" oscillatory state".