18.06 Exam 1 review

1. Fill the blanks: for an $n \times n$ invertible matrix A, the column space C(A) =_____, the null space N(A) =_____, the pivot columns are _____, and the solution to $A\mathbf{x} = \mathbf{b}$ is _____.

2. Answer to the same question as in Problem 1, when $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 2 \end{bmatrix}$. What are the special solutions to $A\mathbf{x} = \mathbf{0}$?

3. Answer to the same question as in Problem 1, when $A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}$. What

are the special solutions to $A\mathbf{x} = \mathbf{0}$?

- 4. If E is a square and invertible matrix,
 (a) How is C(EA) related to C(A)?
 (b) How is N(EA) related to N(A)?
- 5. If A is a 5×6 matrix,
 - (a) Why are there nonzero solutions to $A\mathbf{x} = \mathbf{0}$?
 - (b) How is $C(\begin{bmatrix} A & A \end{bmatrix})$ related to C(A)? (Note that $\begin{bmatrix} A & A \end{bmatrix}$ is a 5 × 12 matrix.)
 - (c) There are at least __ "special" solutions to $\begin{bmatrix} A & A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$ that generate N(A) from linear combinations.
- 6. If P is a permutation matrix, explain why $P^N = I$ holds for some positive integer N.
- 7. (a) If A and B are 4×4 and AB is invertible, show that A is invertible.
 - (b) A 5×4 matrix times a 4×5 matrix cannot produce an invertible 5×5 matrix. Why not?
- 8. Are the following 8 statements are equivalent? Explain.
 - (1) The rank of A is n
 - (2) All the columns of A are pivot columns
 - (3) The nullspace N(A) contains only the zero vector
 - (4) The space $\mathbf{C}(A^T)$ is all of \mathbf{R}^n
 - (5) The columns of A are a basis for its column space
 - (6) If Ax = Ay then x = y (uniqueness of solutions to Ax = b)
 - (7) The matrix $A^T A$ is invertible (and symmetric)
- 9. Spring 2014, Exam 1, Problem 2
- 10. Spring 2014, Exam 1, Problem 3
- 11. Fall 2012, Exam 1, Problem 1
- 12. Two good final practice sets are Exam 1 from Fall 2014 and Spring 2015. Remember you only have 50min to do it.