
Problem Set 9 Solutions

Question 1: Section 6.4, Problem 4, page 338

Let Q = 1√
5

�
2 1
−1 2

�
and Λ =

�
−5 0
0 10

�
. Then Q is orthogonal and A = QΛQT .

One could also swap the columns of Q and their sign. If one swaps the columns, one must swap
−5 and 10.

Question 2: Section 6.4, Problem 6, page 338.
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Question 3: Section 6.4, Problem 9, page 338.

Let A be a real 3× 3 matrix. The characteristic polynomial det(A− λI) is a real cubic polynomial
in λ and by the fundamental theorem of algebra there exists a root λ1 ∈ C. If λ1 ∈ R we are done
since this gives a real eigenvalue of A. If λ1 /∈ R then λ2 = λ1 is a root to the polynomial, distinct
from λ1. Now, (λ−λ1)(λ−λ2) is a real quadratic dividing det(A−λI). By performing the division
we find a real linear factor (λ− λ3) of det(A− λI). This gives a real eigenvalue λ3 of A.

Question 4: Section 6.4, Problem 18, page 339.

1.

Lemma. Suppose that A is a real symmetric matrix. Then the column space of A is orthog-
onal to the nullspace of A.

Proof. Suppose that A is a real symmetric matrix, that x is in the column space and that y
is in the nullspace. Then there exists z with Az = x, Ay = 0 and we have

x · y = (Az) · y = (Az)T y = (zTAT )y = zT (Ay) = zT (0) = 0.

2.

Lemma. Suppose that A is a square matrix and that x is an eignvector for A with eigenvalue
λ. Then x is an eigenvector for A− βI with eigenvalue λ− β.

Proof. Suppose that x is an eignvector for A with eigenvalue λ. By definition this means that
x �= 0 and Ax = λx. Thus, x �= 0 and (A− βI)x = Ax− βx = λx− βx = (λ− β)x, so that x
is an eigenvector for A− βI with eigenvalue λ− β.
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Applying the first argument to A− βI:

Suppose that A is a real symmetric matrix, that x is an eigenvector for A with eigenvalue λ
and that y is an eigenvector for A with eigenvalue β distinct from λ. Then the lemma tells
us that x is an eigenvector for A− βI with eigenvalue λ− β (which is nonzero) and that y is
an eigenvector for A− βI with eigenvalue 0. By part 1 we see that x and y are orthogonal.

Question 5: Section 6.5, Problem 1, page 350.

(i) λ1 and λ2 have the same sign because their product λ1λ2 equals ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 equals a+ c > 0.

Question 6: Section 6.5, Problem 5, page 350

f(x, y) = x2 + 4xy + 3y2 = (x+ 2y)2 − y2, so f(−2, 1) = −1.
This corresponds to the LDLT decomposition

�
1 2
2 3

�
=

�
1 0
2 1

��
1 0
0 −1

��
1 2
0 1

�
.

We can also do this using theQΛQT decomposition. The matrix

�
1 2
2 3

�
has eigenvalues λ1 = 2+

√
5

and λ2 = 2−
√
5 with corresponding eignevectors

v1 = (1, (1 +
√
5)/2)T and v2 = (1, (1−

√
5)/2)T ,

respectively. Since v1 · v1 = (5 +
√
5)/2 and v2 · v2 = (5−

√
5)/2 we obtain

f(x, y) = x2 + 4xy + 3y2 =
2(2 +

√
5)

5 +
√
5

�
x+

�
1 +

√
5

2

�
y

�2

+
2(2−

√
5)

5−
√
5

�
x+

�
1−

√
5

2

�
y

�2

.

Since 2(2+
√
5)

5+
√
5

> 0 and 2(2−
√
5)

5−
√
5

< 0 we can take the square roots of the absolute values of the

coefficients into the parentheses to obtain a difference of squares.

f(−1−
√
5, 2) = 20 · 2(2−

√
5)

5−
√
5

< 0.

Question 7: Section 6.5, Problem 6, page 350.

f(x, y) = (x, y)

�
0 1
1 0

��
x
y

�
. The eigenvalues of

�
0 1
1 0

�
are 1 and −1.

Question 8: Section 6.5, Problem 15, page 351.

You were only required to give one method but here are two.

1. Assume A and B are positive definite n×n matrices. Then xTAx, xTBx > 0 for all nonzero
x ∈ Rn. Thus xT (A + B)x = xTAx + xTBx > 0 for all nonzero x ∈ Rn, which means that
A+B is positive definite.
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2. Assume A and B are positive definite n × n matrices. Then there exist matrices R and S
with A = RTR and B = STS. R is k × n for some k and S is m× n for some m.�
R
S

�
is (k +m)× n.

�
R
S

�T

=
�
RT ST

�
and so

�
R
S

�T �
R
S

�
= RTR+ STS = A+B. This

implies that A+B is positive definite.

Question 9: Section 6.5, Problem 26, page 353.

(a) Let A =




9 0 0
0 1 2
0 2 8



.

To row reduce A we subtract two lots of the second row from the third row and we find the
pivots are 9, 1 and 4. This gives us

L−1 =




1 0 0
0 1 0
0 −2 1



 and D =




9 0 0
0 1 0
0 0 4



 .

So A = CTC where CT = L
√
D. Thus

C =
√
DLT =




3 0 0
0 1 0
0 0 2








1 0 0
0 1 2
0 0 1



 =




3 0 0
0 1 2
0 0 2



 .

(b) Let A =




1 1 1
1 2 2
1 2 7



.

We see that the relevant row reduction matrix to consider is L−1 =




1 0 0
−1 1 0
0 −1 1



 and the

pivots are 1, 1 and 5, so that D =




1 0 0
0 1 0
0 0 5



. We have A = CTC where CT = L
√
D. Thus

C =
√
DLT =




1 0 0
0 1 0
0 0

√
5








1 −1 0
0 1 −1
0 0 1




−1

=




1 0 0
0 1 0
0 0

√
5








1 1 1
0 1 1
0 0 1



 =




1 1 1
0 1 1
0 0

√
5



 .

Question 10: Section 6.6, Problem 2, page 360.

Let M =

�
0 1
1 0

�
. Then M = M−1 and M

�
1 0
0 3

�
M =

�
3 0
0 1

�
.

3


