18.06 PROBLEM SET 7
SOLUTIONS

Problem 1. Section 5.2, Problem 3, page 263. Clarification. In this problem z’s
symbolize 5 nonzero entries (not necessarily equal).

Each cofactor Cj; is given by: C;; = (—1)""Idet(M;;), where the submatrix M;;
is obtained from A by removing row ¢ and column j. Cofactors of row 1: Cy; = 0,
C12 =0, C13 = 0. Using the cofactor formula, this already guarantees det(A) = 0.

Rank of A is 2, because there are exactly two independent rows.
Using the big formula:

det(A)=zx0xz+xzx0x04+zxxxx0—2x0x0—zxex0—zx0xz=0

Problem 2. Section 5.2, Problem 17, page 265. Clarification. The matrix A,, is

the n x n matrix as in Example 6 on page 261.

Expanding on the last row:
1 -1 0 0

o9 1 o 1 -1 0 1 -1 0
=D =1 2 0|+ -1 2 -1
0 -1 2 -1 0 -1 -1 0 -1 2
0 0 -1 2
1 -1 0 L1
“12 0Bl =2+ (00| <l 1B
0 -1 -1 B

Problem 3. Section 5.2, Problem 23 page 266.

a)Expanding on the last row:

a a b b
a; aiz b; b;z air a1z biz ann a1z bi
0 0 dyy dus = —dy1 |a21 az2 bao|+daz|asr az b
0 0 dy do 0 0 dp 0 0 dn
a a a a
= —dodiz| "1 P fdaadin | M1 = [A|(diidas — daidi) = [A]|D)
a a22 a 5

b)There are many counterexamples, for instance matrix P from problem 4 works

(Prob 31, page 268).

0 0 01
1.0 0 0
PiO 1 00
0 010

In fact,|P| = —1, but the block determinant would give: |P|=0x0—-0x0=0.
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¢)There are many counterexamples, for instance matrix the same matrix P above

works. Here:
0 0 A B

ap-coi=[) Y <opoi-|t 2

]=|P

Problem 4. Section 5.2, Problem 31 page 268.

Clarification. In this problem “exchange” means switching of any two numbers in
a permutation. The problem asks to find the minimal number of such exchanges
needed to obtain the permutation 4, 1, 2, 3 from 1, 2, 3, 4.

Expanding by cofactors of row 1, we are left with only one term:
[Pl = ()= = -1
where I3 is the 3 x 3 identity matrix.
Expanding by the ”big formula”, notice that only one term of the 4! would survive,
namely the one corresponding to the permutation (4, 1,2,3). Exactly 3 exchanges

are needed to reorder into (1,2, 3,4), therefore the permutation is odd and negative.
So, [Pl=(-1)(1x1x1x1)=-1.

For P?, expanding the ”big formula”, only one term will survive, namely the
corresponding to the permutation (3,4,1,2), which is positive (need 4 exchanges).
Therefore, |P?| = +1 # 0.

Problem 5. Section 5.3, Problem 5 page 279.
Clarification. In this problem, assume that A is invertible.

By Cramer’s Rule, if det(A) # 0, the solution for Az = b is given by:

_ det(By)
T det(A)
_ det(Bk)
Tk det(A)

for any k > 1. Here By is A with the k-th column substituted by b. Since b is
already the first column of A, By = A, and thus x; = 1. For all other cases k > 1,
By, has the first and k-th column equal to b, thus By is not invertible and zp = 0
for k > 1. Therefore, the only solution is z = (1,0,0)7.

Problem 6. Section 5.3, Problem 7 page 279.

According to the cofactor formula, the determninant is a linear combination of
all the cofactors of some row of the matrix. If all cofactors are zero, this linear
combination is zero. So, det(A) = 0 and A has no inverse. If none of the cofactors
are zero, then A can still be singular, as the linear combination could give zero. A
simple example is given by

Problem 7. Section 5.3, Problem 14 page 280.
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a) The three zero cofactors are: Cyy = C31 = C39 = 0, thus C' is upper triangu-

T
lar. Since L~ = def(L)

b) One can easily check that:

, L™ is lower triangular.

Co1 = Cr2 = —(bf — de)
031 = 013 =be —dc
032 = 023 = —(ae — bd)

Since C' is symmetric, then CT and S~! are symmetric as well. ¢) Starting with

1 ct : T 1
Q= &et(Q)’ and using Q"' = @
CT
T _n-1_
R 1)
Taking transpose on both sides
C
REI(0)
C==Q

Since det(Q) = +1 when @ is orthogonal.

Problem 8. Section 6.1, Problem 4 page 293.

-1 3

9 O} by solving |A — AI| = 0:

First we compute the eigenvalues for A = {

-1-X 3
2 -A

’:)\2+/\+6:()\+3)()\—2):0

This gives two values for A, \; = —3 or A2 = 2. We compute the eigenvectors by
finding the nullspaces of the matrices A — A\I and A — A\o1:

2 3

2 3

(A+3I):{ 5

| -0 =[]

-3 3
2 =2

Using the same procedure, you could compute the eigenvalues and eigenvectors
for A% and then compare. A shortcut is: Ax; = A\;x; implies A%2x; = M\ Ax; =
A2x1. Thus, A? is an eigenvalue for A2 with the same eigenvector x;. Analogously,

A2 is an eigenvalue for A? with eigenvector xo. Therefore the eigenvalues of A% are
9 and 4.

(A—zf)_{ }—>(A—2I)x—0—>x2—[ﬂ

A? has the same eigenvectors as A. When A has eigenvalues A; and \o, A2 has
eigenvalues \? and A\3. In this example, A\? + A3 = 13, because the sum of the n
eigenvalues of a matrix is always equal to its trace.
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Problem 9. Section 6.1, Problem 26 page 296. Using the result from Problem 3a)

for the determinant of block matrices:

B C A0 B -\ C -1-Xx 3
[A=AT] = [0 D} B {0 AI‘} _' 0 D—)\I‘ _‘ g | T IBAMID=A
This expression vanishes whenever |B — AI| = 0 or |D — AI| = 0. This happens for

A=1,2 and A = 5,7. Therefore, the eigenvalues of A are given by 1,2,5,7.

Note: to avoid complicating notation we used I for the identity of size 2 x 2 and
4 x 4 indistinctly, and we assume you know which is appropriate for each case.

Problem 10. (Computational Problem) See online.



