
18.06 Problem Set 7
Solutions

Problem 1. Section 5.2, Problem 3, page 263. Clarification. In this problem x’s

symbolize 5 nonzero entries (not necessarily equal).

Each cofactor Cij is given by: Cij = (−1)i+jdet(Mij), where the submatrix Mij

is obtained from A by removing row i and column j. Cofactors of row 1: C11 = 0,
C12 = 0, C13 = 0. Using the cofactor formula, this already guarantees det(A) = 0.
Rank of A is 2, because there are exactly two independent rows.
Using the big formula:

det(A) = x× 0× x+ x× 0× 0 + x× x× 0− x× 0× 0− x× x× 0− x× 0× x = 0

.

Problem 2. Section 5.2, Problem 17, page 265. Clarification. The matrix An is

the n× n matrix as in Example 6 on page 261.

Expanding on the last row:∣∣∣∣∣∣∣∣
1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

∣∣∣∣∣∣∣∣ = (−1)(−1)4+3

∣∣∣∣∣∣
1 −1 0
−1 2 0
0 −1 −1

∣∣∣∣∣∣ + (2)(−1)4+4

∣∣∣∣∣∣
1 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 −1 0
−1 2 0
0 −1 −1

∣∣∣∣∣∣ + 2|B3| = 2|B3|+ (−1)(−1)3+3

∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 2|B3| − |B2|

Problem 3. Section 5.2, Problem 23 page 266.

a)Expanding on the last row:∣∣∣∣∣∣∣∣
a11 a12 b11 b12
a21 a22 b21 b22
0 0 d11 d12
0 0 d21 d22

∣∣∣∣∣∣∣∣ = −d21

∣∣∣∣∣∣
a11 a12 b12
a21 a22 b22
0 0 d12

∣∣∣∣∣∣ + d22

∣∣∣∣∣∣
a11 a12 b11
a21 a22 b21
0 0 d11

∣∣∣∣∣∣
= −d21d12

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ + d22d11

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = |A|(d11d22 − d21d12) = |A||D|

b)There are many counterexamples, for instance matrix P from problem 4 works
(Prob 31, page 268).

P =

∣∣∣∣∣∣∣∣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣∣
In fact,|P | = −1, but the block determinant would give: |P | = 0× 0− 0× 0 = 0.
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c)There are many counterexamples, for instance matrix the same matrix P above
works. Here:

|AD − CB| =
∣∣∣∣0 0
0 0

∣∣∣∣ = 0 6= −1 =

∣∣∣∣A B
C D

∣∣∣∣ = |P |

Problem 4. Section 5.2, Problem 31 page 268.
Clarification. In this problem “exchange” means switching of any two numbers in
a permutation. The problem asks to find the minimal number of such exchanges
needed to obtain the permutation 4, 1, 2, 3 from 1, 2, 3, 4.

Expanding by cofactors of row 1, we are left with only one term:

|P | = (1)(−1)1+4|I3| = −1

where I3 is the 3× 3 identity matrix.
Expanding by the ”big formula”, notice that only one term of the 4! would survive,
namely the one corresponding to the permutation (4, 1, 2, 3). Exactly 3 exchanges
are needed to reorder into (1, 2, 3, 4), therefore the permutation is odd and negative.
So, |P | = (−1)(1× 1× 1× 1) = −1.

For P 2, expanding the ”big formula”, only one term will survive, namely the
corresponding to the permutation (3,4,1,2), which is positive (need 4 exchanges).
Therefore, |P 2| = +1 6= 0.

Problem 5. Section 5.3, Problem 5 page 279.
Clarification. In this problem, assume that A is invertible.

By Cramer’s Rule, if det(A) 6= 0, the solution for Ax = b is given by:

x1 =
det(B1)

det(A)

xk =
det(Bk)

det(A)

for any k > 1. Here Bk is A with the k-th column substituted by b. Since b is
already the first column of A, B1 = A, and thus x1 = 1. For all other cases k > 1,
Bk has the first and k-th column equal to b, thus Bk is not invertible and xk = 0
for k > 1. Therefore, the only solution is x = (1, 0, 0)T .

Problem 6. Section 5.3, Problem 7 page 279.

According to the cofactor formula, the determninant is a linear combination of
all the cofactors of some row of the matrix. If all cofactors are zero, this linear
combination is zero. So, det(A) = 0 and A has no inverse. If none of the cofactors
are zero, then A can still be singular, as the linear combination could give zero. A
simple example is given by ∣∣∣∣ 1 −1

−1 1

∣∣∣∣
Problem 7. Section 5.3, Problem 14 page 280.
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a) The three zero cofactors are: C21 = C31 = C32 = 0, thus C is upper triangu-

lar. Since L−1 =
CT

det(L)
, L−1 is lower triangular.

b) One can easily check that:

C21 = C12 = −(bf − de)

C31 = C13 = be− dc

C32 = C23 = −(ae− bd)

Since C is symmetric, then CT and S−1 are symmetric as well. c) Starting with

Q−1 =
CT

det(Q)
, and using QT = Q−1

QT = Q−1 =
CT

det(Q)

Taking transpose on both sides

Q =
C

det(Q)

C = ±Q
Since det(Q) = ±1 when Q is orthogonal.

Problem 8. Section 6.1, Problem 4 page 293.

First we compute the eigenvalues for A =

[
−1 3
2 0

]
by solving |A− λI| = 0:∣∣∣∣−1− λ 3

2 −λ

∣∣∣∣ = λ2 + λ+ 6 = (λ+ 3)(λ− 2) = 0

This gives two values for λ, λ1 = −3 or λ2 = 2. We compute the eigenvectors by
finding the nullspaces of the matrices A− λ1I and A− λ2I:

(A+ 3I) =

[
2 3
2 3

]
→ (A+ 3I)x = 0→ x1 =

[
−3
2

]

(A− 2I) =

[
−3 3
2 −2

]
→ (A− 2I)x = 0→ x2 =

[
1
1

]
Using the same procedure, you could compute the eigenvalues and eigenvectors

for A2 and then compare. A shortcut is: Ax1 = λ1x1 implies A2x1 = λ1Ax1 =
λ21x1. Thus, λ21 is an eigenvalue for A2 with the same eigenvector x1. Analogously,
λ22 is an eigenvalue for A2 with eigenvector x2. Therefore the eigenvalues of A2 are
9 and 4.

A2 has the same eigenvectors as A. When A has eigenvalues λ1 and λ2, A2 has
eigenvalues λ21 and λ22. In this example, λ21 + λ22 = 13, because the sum of the n
eigenvalues of a matrix is always equal to its trace.
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Problem 9. Section 6.1, Problem 26 page 296. Using the result from Problem 3a)

for the determinant of block matrices:

|A−λI| =
∣∣∣∣[B C

0 D

]
−
[
λI 0
0 λI

−
]∣∣∣∣ =

∣∣∣∣B − λI C
0 D − λI

∣∣∣∣ =

∣∣∣∣−1− λ 3
2 −λ

∣∣∣∣ = |B−λI||D−λI|

This expression vanishes whenever |B − λI| = 0 or |D− λI| = 0. This happens for
λ = 1, 2 and λ = 5, 7. Therefore, the eigenvalues of A are given by 1, 2, 5, 7.

Note: to avoid complicating notation we used I for the identity of size 2× 2 and
4× 4 indistinctly, and we assume you know which is appropriate for each case.

Problem 10. (Computational Problem) See online.


