
PS1 Solution Template

a. Using the matrix squaring operator create a “triangular” matrix with 1 on the main diagonal, 2
above, etc.

M(n) =


1 2 . . . n− 1 n

1 2 . . . n− 1
. . .

. . .

1 2
1


In[1]: # The line below is a Julia function that given n computes M(n)

If you are not using Julia please supply your function

M(n) = triu(ones(n,n))^2

Show that it works

M(5)

Out[1]: # Put your output here

5x5 Array{Float64,2}:

1.0 2.0 3.0 4.0 5.0

0.0 1.0 2.0 3.0 4.0

0.0 0.0 1.0 2.0 3.0

0.0 0.0 0.0 1.0 2.0

0.0 0.0 0.0 0.0 1.0

1

In[2]: # Show that it works for n=1,2,3,4,5,6

{M(n) for n=1:6}

Out[2]: # Put your output here

6-element Array{Any,1}:

1x1 Array{Float64,2}:

1.0

2x2 Array{Float64,2}:

1.0 2.0

0.0 1.0

3x3 Array{Float64,2}:

1.0 2.0 3.0

0.0 1.0 2.0

0.0 0.0 1.0

4x4 Array{Float64,2}:

1.0 2.0 3.0 4.0

0.0 1.0 2.0 3.0

0.0 0.0 1.0 2.0

0.0 0.0 0.0 1.0

5x5 Array{Float64,2}:

1.0 2.0 3.0 4.0 5.0

0.0 1.0 2.0 3.0 4.0

0.0 0.0 1.0 2.0 3.0

0.0 0.0 0.0 1.0 2.0

0.0 0.0 0.0 0.0 1.0

6x6 Array{Float64,2}:

1.0 2.0 3.0 4.0 5.0 6.0

0.0 1.0 2.0 3.0 4.0 5.0

0.0 0.0 1.0 2.0 3.0 4.0

0.0 0.0 0.0 1.0 2.0 3.0

0.0 0.0 0.0 0.0 1.0 2.0

0.0 0.0 0.0 0.0 0.0 1.0

2

b. You very likely have heard of the triangular numbers: (see wikipedia if not)

Tn = 1 + 2 + . . . + n.

In[3]: #Here they are

cumsum(1:10)’

If not using Julia, how would you do this in your language?

Out[3]: 1x10 Array{Int64,2}:

1 3 6 10 15 21 28 36 45 55

Don’t use cumsum, or sum or “+”, just matrix operations to create the matrix that has the triangular
numbers on the diagonals: Explain roughly (not too formal a proof), why your idea works.

M(n) =


1 3 . . . (n− 1)n/2 n(n + 1)/2

1 3 . . . (n− 1)n/2
. . .

. . .

1 3
1


In[4]: # Put your input code here, put in a function and show that it

works, just like In[1] and Out[1]

M(n) = triu(ones(n,n))^3

M(5)

Out[4]: 5x5 Array{Float64,2}:

1.0 3.0 6.0 10.0 15.0

0.0 1.0 3.0 6.0 10.0

0.0 0.0 1.0 3.0 6.0

0.0 0.0 0.0 1.0 3.0

0.0 0.0 0.0 0.0 1.0

3

c. Don’t stop. Keep going, and get the tetrahedral numbers. (see wikipedia) Explain briefly why
this worked.

In[5]: # This is hardly much different from In[4] and Out[4]

M(n) = triu(ones(n,n))^4

M(5)

Out[5]: 5x5 Array{Float64,2}:

1.0 4.0 10.0 20.0 35.0

0.0 1.0 4.0 10.0 20.0

0.0 0.0 1.0 4.0 10.0

0.0 0.0 0.0 1.0 4.0

0.0 0.0 0.0 0.0 1.0

If you think about how matrix multiply works, if you multiply any matrix A by triu(ones(n,n))

the (i,j) element of the result is the partial sum of the ith row up to the jth column. Said more simply,
it’s like doing a cumsum of each row. That’s exactly how the tetrahedral numbers are defined, as the
cumsum of the triangular numbers.

4

d. Let A =


1
2
3
1

 and B =
[
−1 2 1 4

]
.

Compute (AB)10 on your computer. Explain why it’s possible to get this without a computer!

In[6]: A=[1;2;3;1]

Out[6]: 4-element Array{Int64,1}:

1

2

3

1

In[7]: B=[-1 2 1 4]

Out[7]: 1x4 Array{Int64,2}:

-1 2 1 4

5

In[8]: (A*B)^10

Out[8]: # Put your solution here

4x4 Array{Int64,2}:

-1000000000 2000000000 1000000000 4000000000

-2000000000 4000000000 2000000000 8000000000

-3000000000 6000000000 3000000000 12000000000

-1000000000 2000000000 1000000000 4000000000

In[9]: B*A

Out[9]: # Put your solution here

1-element Array{Int64,1}:

10

and see if you can see and tell us what is going on.
Let us add one more computation

In[10]: A*B

Out[10]: 4x4 Array{Int64,2}:

-1 2 1 4

-2 4 2 8

-3 6 3 12

-1 2 1 4

Notice that (AB)10 = (AB) ∗ 109. This is because

(AB)10 = A(BA)9B = A(10)9B = AB(10)9.

No computer would be needed.

6

