
Solutions to problem set #1

ad problem 1: Solution to Section 1.2, problem 13.
Several answers are possible. For example, (1, 0,−1) and (0, 1, 0) fit the bill.
Remarks: A more systematic approach is given by the “Gram-Schmidt pro-

cess” (§4.4). But in this specific problem, it is enough to just “look”.

ad problem 2: Solution to Section 2.1, problem 7.
In Problem 5 the columns are (1, 1, 2) and (1, 2, 3) and (1, 1, 2). This is a “sin-

gular case” because the third column is a linear combination of the first two.
Find two combinations of the columns that give b = (2, 3, 5): There are in-

finitely many possible answers to this; the simplest is probably “first column +
second column” and “second column + third column”. These do count as two
different combinations, because they have different coefficients in front of the
columns.

This is only possible for b = (4, 6, c) if c = 10. (Indeed, this is possible if
and only if we can find real numbers x, y, z such that x (1, 1, 2) + y (1, 2, 3) +
z (1, 1, 2) = (4, 6, c). This is the following system of linear equations in x, y, z:

x + y + z = 4;
x + 2y + z = 6;

2x + 3y + 2z = c.

Gaussian elimination transforms this into

x + y + z = 4;
y = 2;
y = c− 8.

This is solvable if and only if c− 8 = 2, that is, c = 10.)

ad problem 3: Solution to Section 2.2, problem 12.
We put pivots in boxes rather than circles. The first pivot is the 2 in the first

row:

2 x + 3y + z = 8;
4x + 7y + 5z = 20;
−2y + 2z = 0.

We use this pivot to get rid of the 4 in the second row (by subtracting twice the
first row from the second row):

2 x + 3y + z = 8;
y + 3z = 4;

−2y + 2z = 0.
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There is now a pivot on the second row:

2 x + 3y + z = 8;

1 y + 3z = 4;
−2y + 2z = 0.

We use it to clear out the −2 on the third row:

2 x + 3y + z = 8;

1 y + 3z = 4;
8z = 8.

The 8 on the third row is now a pivot:

2 x + 3y + z = 8;

1 y + 3z = 4;

8 z = 8.

Back-substitution now gives z = 1, y = 4− 3 · 1 = 1 and x =
1
2
(8− 1− 3 · 1) = 2.

Thus, (x, y, z) = (2, 1, 1) is the unique solution.

ad problem 4: Solution to Section 2.3, problem 19.

PQ =

 0 1 0
0 0 1
1 0 0

 , QP =

 0 0 1
1 0 0
0 1 0

 , P2 =

 1 0 0
0 1 0
0 0 1

 .

To get another non-diagonal matrix M whose square is M2 = I, we can just take
M = −P. Indeed, (−P)2 = (−P) (−P) = PP = P2 = I. Other possible answers
are M = PQP = QPQ or M = −Q or M = −PQP.

ad problem 5: Solution to Section 2.4, problem 6.

We have (A + B)2 =

(
10 4
6 6

)
and A2 + 2AB + B2 =

(
16 2
3 0

)
, which are

two different matrices.
The correct rule is (A + B)2 = A2 + AB + BA + B2. This follows from the

distributivity of matrix multiplication.

ad problem 6: Solution to Section 2.5, problem 11.
There is a lot of freedom here; the following answers are probably the simplest:
(a) Let A = (1) and B = (−1). Yes, these are 1× 1-matrices. But the same idea

works for 2× 2-matrices (A =

(
1 0
0 1

)
and B = −A).
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(b) Let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
.

ad problem 7: (a) We have(
1 1
1 0

)1( 1
0

)
=

(
1
1

)
;(

1 1
1 0

)2( 1
0

)
=

(
2
1

)
;(

1 1
1 0

)3( 1
0

)
=

(
3
2

)
;(

1 1
1 0

)4( 1
0

)
=

(
5
3

)
.

(b) The general rule is that(
1 1
1 0

)n ( 1
0

)
=

(
fn+1

fn

)

for every positive integer n. 1 In particular for n = 5, we obtain
(

1 1
1 0

)5( 1
0

)
=(

8
5

)
.

ad problem 8: (a) No. We have

 0 a 0
b c d
0 e 0

 d
0
−b

 = 0, so if the matrix

was invertible, then the vector

 d
0
−b

 would be 0, so that both b and d would

be 0, but then we would have

 0 a 0
b c d
0 e 0

 1
0
0

 =

 0
b
0

 = 0, which would

contradict invertibility.

1This can be proven by induction over n: If
(

1 1
1 0

)n ( 1
0

)
=

(
fn+1

fn

)
, then

(
1 1
1 0

)n+1 ( 1
0

)
=

(
1 1
1 0

)(
1 1
1 0

)n ( 1
0

)
︸ ︷︷ ︸

=

(
fn+1

fn

)
=

(
1 1
1 0

)(
fn+1

fn

)

=

(
fn+1 + fn

fn+1

)
=

(
fn+2
fn+1

)
by the recursion.

This is not required of the students.
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(b) Yes. For example, it is invertible for a = 1, b = 0, c = 1, d = 0 and e = 1.
(Its inverse is itself in this case.)

ad problem 9: (a) Yes. A failure at the first step happens precisely if the first
coefficient of the first equation is 0. For example:

y + z = 0;
x + y + z = 1;

z = 2.

(One should check that the failure is temporary, not permanent – but this is
easy.)

(b) Yes. Here is a simple example:

x + y + z = 1;
z = 2;

y + z = 3.

(The first step does nothing, because the second and third rows already have no
x’es.)

(c) No. A temporary failure is repaired by switching the row in which it occurs
with a row further below. But at the third step, there is no row further below
anymore (because we are working with the third row), and thus any failure at
the third step must be permanent.

ad problem 10: Sorry, I am using Sage so far.
(a) Function which returns En:

sage: def E(n):
....: return Matrix(QQ,
....: [[(1 if j >= i else 0) for j in range(n)]
....: for i in range(n)])
....:

Testing:
sage: E(2)
[1 1]
[0 1]
sage: E(3)
[1 1 1]
[0 1 1]
[0 0 1]
We can get Mn by noticing that Mn = E2

n:
sage: E(2) ** 2
[1 2]
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[0 1]
sage: E(3) ** 2
[1 2 3]
[0 1 2]
[0 0 1]
sage: E(4) ** 2
[1 2 3 4]
[0 1 2 3]
[0 0 1 2]
[0 0 0 1]
The problem does not ask why this works, but let us explain it all the same.

We need to prove that Mn = E2
n. Let i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n}.

• Assume first that j ≥ i (so the box (i, j) is on the main diagonal or above
it). Then, (the (i, j) -th entry of Mn) = j− i + 1. What is the (i, j)-th entry
of E2

n ? It is(
the (i, j) -th entry of E2

n

)
= (the (i, j) -th entry of En · En)

=
n

∑
k=1

(the (i, k) -th entry of En) · (the (k, j) -th entry of En)

(by the “row · column” definition of the product of two matrices)

=
i−1

∑
k=1

(the (i, k) -th entry of En)︸ ︷︷ ︸
=0

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=1

+
j

∑
k=i

(the (i, k) -th entry of En)︸ ︷︷ ︸
=1

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=1

+
n

∑
k=j+1

(the (i, k) -th entry of En)︸ ︷︷ ︸
=1

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=0

=
i−1

∑
k=1

0 · 1︸ ︷︷ ︸
=0

+
j

∑
k=i

1 · 1︸ ︷︷ ︸
=j−i+1

+
n

∑
k=j+1

1 · 0︸ ︷︷ ︸
=0

= j− i + 1,

which is exactly what we obtained for the (i, j)-th entry of Mn. So the
matrices Mn and E2

n have the same (i, j)-th entry.

• A similar argument shows that the same result holds (i.e., the matrices Mn
and E2

n have the same (i, j)-th entry) when we have j < i instead of j ≥ i,
but now the entries are both 0.
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So the matrices Mn and E2
n are identical entry by entry, which shows that

Mn = E2
n.

(b) We can get Sn using Sn = E3
n:

sage: E(2) ** 3
[1 3]
[0 1]
sage: E(3) ** 3
[1 3 6]
[0 1 3]
[0 0 1]
sage: E(4) ** 3
[ 1 3 6 10]
[ 0 1 3 6]
[ 0 0 1 3]
[ 0 0 0 1]
We need to explain why this is true. We can proceed just as in (a), showing

that Sn = E3
n by comparing the two matrices entry by entry. Let i ∈ {1, 2, ..., n}

and j ∈ {1, 2, ..., n}.

• Assume first that j ≥ i (so the box (i, j) is on the main diagonal or above

it). Then, (the (i, j) -th entry of Sn) =
(j− i + 1)(j− i + 2)

2
. What is the

(i, j)-th entry of E3
n ? Since E3

n = E2
nEn = MnEn (because we already know
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that E2
n = Mn), it is(

the (i, j) -th entry of E3
n

)
= (the (i, j) -th entry of Mn · En)

=
n

∑
k=1

(the (i, k) -th entry of Mn) · (the (k, j) -th entry of En)

(by the “row · column” definition of the product of two matrices)

=
i−1

∑
k=1

(the (i, k) -th entry of Mn)︸ ︷︷ ︸
=0

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=1

+
j

∑
k=i

(the (i, k) -th entry of Mn)︸ ︷︷ ︸
=k−i+1

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=1

+
n

∑
k=j+1

(the (i, k) -th entry of Mn)︸ ︷︷ ︸
=k−i+1

· (the (k, j) -th entry of En)︸ ︷︷ ︸
=0

=
i−1

∑
k=1

0 · 1︸ ︷︷ ︸
=0

+
j

∑
k=i

(k− i + 1) · 1︸ ︷︷ ︸
=

j
∑

k=i
(k−i+1)

+
n

∑
k=j+1

(k− i + 1) · 0︸ ︷︷ ︸
=0

=
j

∑
k=i

(k− i + 1) =
j−i+1

∑
k=1

k =
(j− i + 1)(j− i + 2)

2
,

which is exactly what we obtained for the (i, j)-th entry of Sn. So the
matrices Sn and E3

n have the same (i, j)-th entry.

• A similar argument shows that the same result holds (i.e., the matrices Sn
and E3

n have the same (i, j)-th entry) when we have j < i instead of j ≥ i,
but now the entries are both 0.

So the matrices Sn and E3
n are identical entry by entry, which shows that Sn =

E3
n.
(c) The n × n-matrix formed of the tetrahedral numbers in the same way as

Sn was formed of triangular matrix is E4
n. To prove this, one can proceed in

the same way as we proved Sn = E3
n above, but instead of using that the n-th

triangular number is the sum of the first n positive integers, we need to use that
the n-th tetrahedral number is the sum of the first n triangular numbers.

(d)

sage: A = Matrix(QQ, [[1], [2], [3], [1]])
sage: B = Matrix(QQ, [-1, 2, 1, 4])
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sage: (A*B)**10
[-1000000000 2000000000 1000000000 4000000000]
[-2000000000 4000000000 2000000000 8000000000]
[-3000000000 6000000000 3000000000 12000000000]
[-1000000000 2000000000 1000000000 4000000000]
sage: A*B
[-1 2 1 4]
[-2 4 2 8]
[-3 6 3 12]
[-1 2 1 4]
sage: B*A
[10]

The trick here is that

(AB)10 = AB · AB · AB · · · AB︸ ︷︷ ︸
10 times

= A (BA · BA · BA · · · BA)︸ ︷︷ ︸
9 times

B = A (BA)9 B.

But BA = (10) (a 1× 1-matrix) in our case; that is, BA = 10I, so that (BA)9 =

109 I. Thus, (AB)10 = A (BA)9︸ ︷︷ ︸
=109 I

B = A · 109 I · B = 109AIB = 109AB, which is

easy to compute by hand.
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