
Solutions to problem set #10

ad problem 1: (a) The required SVD is AT = VΣTUT.

(Proof: In fact, A = UΣVT leads to AT =
(
UΣVT)T

=
(

VT
)T

︸ ︷︷ ︸
=V

ΣTUT = VΣTUT,

and each of V and U is a matrix with orthonormal columns.)
Don’t forget the transposition in ΣT ! Unless Σ is a square matrix, ΣT 6= Σ

even though Σ is “diagonal”. The matrices ΣT and Σ share the same diagonal
entries and their off-diagonal entries are all 0, but their shapes are distinct unless
Σ is square.

(b) The required SVD is A−1 = VΣ−1UT.
(Proof: Assume that A is invertible. Then, A is square and has full rank. Hence,

U, Σ and VT must be invertible square matrices (since A = UΣVT), and thus V
is an invertible square matrix. Now, A = UΣVT leads to A−1 =

(
UΣVT)−1

=(
VT)−1 Σ−1U−1.
But being a square matrix with orthonormal columns, U must be orthogonal,

so that U−1 = UT and similarly V−1 = VT. Hence, A−1 =
(

VT
)−1

︸ ︷︷ ︸
=V

(since V−1=VT)

Σ−1 U−1︸︷︷︸
=UT

=

VΣ−1UT.)

ad problem 2: I will only show the results. For how to compute it, see
Michael’s recitation #101 and the solutions to Alex’s review problems to exam
#3.

(a) Let A =

(
1 0 1
0 1 0

)
. An SVD is A = UΣVT with

U =

(
1 0
0 1

)
, Σ =

( √
2 0 0

0 1 0

)
, V =


√

2
2

0 −
√

2
2

0 1 0√
2

2
0

√
2

2

 .

(b) Let A =

 1 0 1
0 1 0
−1 0 1

. An SVD is A = UΣVT with

U =


1
2

√
2

1
2

√
2 0

0 0 1

−1
2

√
2

1
2

√
2 0

 , Σ =


√

2 0 0
0
√

2 0
0 0 1

 , V =

 1 0 0
0 0 1
0 1 0

 .
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(c) Let A =

 1 1 1
1 1 1
0 0 0

. An SVD is A = UΣVT with

U =


1
2

√
2 −1

2

√
2 0

1
2

√
2

1
2

√
2 0

0 0 1

 , Σ =

 √6 0 0
0 0 0
0 0 0

 ,

V =


1
3

√
3 −1

2

√
2 −1

6

√
6

1
3

√
3

1
2

√
2 −1

6

√
6

1
3

√
3 0

1
3

√
6

 .

[There is one possible source of confusion in part (c): here you have to con-
struct orthonormal bases of subspaces which are not always 1-dimensional.
Specifically, the eigenspace of AT A for eigenvalue 0 and the nullspace N

(
AAT)

of AAT are 2-dimensional. You cannot just take an arbitrary basis and scale its
vectors to have length 1 here; the resulting vectors might fail to be orthogonal.
Instead you need to apply the Gram-Schmidt orthonormalization algorithm.

Let us show this on the example of the eigenspace of AT A for eigenvalue

0. This eigenspace is spanned by b1 =

 −1
1
0

 and b2 =

 −1
0
1

. We are

looking for an orthonormal basis (q1, q2) of this subspace. The Gram-Schmidt
algorithm (page 234, but we are using different notations) proceeds by setting

b̃1 = b1 and b̃2 = b2 −
b̃T

1 b2

b̃T
1 b1

b1, and then setting q1 =
b̃1∣∣∣∣∣∣b̃1

∣∣∣∣∣∣ and q2 =
b̃2∣∣∣∣∣∣b̃2

∣∣∣∣∣∣ . So

b̃1 = b1 =

 −1
1
0

 and

b̃2 = b2 −
b̃T

1 b2

b̃T
1 b1

b1 =

 −1
0
1

−
 −1

1
0

T  −1
0
1


 −1

1
0

T  −1
1
0


 −1

1
0



=

 −1
0
1

− 1
2

 −1
1
0

 =


−1

2
−1

2
1

 .
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Finally, q1 =
b̃1∣∣∣∣∣∣b̃1

∣∣∣∣∣∣ =
 −1

1
0


√

2
=


−1

2

√
2

1
2

√
2

0

 and q2 =
b̃2∣∣∣∣∣∣b̃2

∣∣∣∣∣∣ =


−1

2
−1

2
1


1
2

√
6

=


−1

6

√
6

−1
6

√
6

1
3

√
6

.]

ad problem 3: We need to show that any two SVDs of A with the same Σ are
obtained from each other in such a way.

So let A = UΣVT and A = ŨΣṼT be two SVDs of A with the same Σ. Thus,
U, V, Ũ and Ṽ are orthogonal, and Σ is diagonal.

The matrix A is n× n. Thus, the matrices U, V, Ũ, Ṽ and Σ are all n× n. Let
η1, η2, . . . , ηn be the diagonal entries of Σ (in the order in which they appear in
Σ). Notice that these entries η1, η2, . . . , ηn are the singular values σ1, σ2, . . . , σn of
A, but not necessarily in the same order. We have Σ = diag (η1, η2, . . . , ηn), so
that ΣT = Σ and ΣTΣ = Σ2 = diag

(
η2

1 , η2
2 , . . . , η2

n
)
.

The singular values σ1, σ2, . . . , σn of A are pairwise distinct (since σ1 > σ2 >
· · · > σn). Thus, the matrix A has n pairwise distinct singular values. Hence,
the matrix AT A has n pairwise distinct nonzero eigenvalues (since the singular
values of A are the square roots of the nonzero eigenvalues of AT A). As a
consequence, for each of these eigenvalues, the matrix AT A has exactly one (up
to scaling) eigenvector (because if it had a more-than-1-dimensional eigenspace
for some eigenvector, then the sum of the dimensions of the n eigenspaces would
total to something greater than n, but this cannot happen). Hence, for every
i ∈ {1, 2, . . . , n},

the matrix AT A has exactly one (up to

scaling) eigenvector for the eigenvalue η2
i . (1)

Let u1, u2, . . . , un be the columns of U, let v1, v2, . . . , vn be the columns of V,
let ũ1, ũ2, . . . , ũn be the columns of Ũ, and let ṽ1, ṽ2, . . . , ṽn be the columns of Ṽ.

The algorithm for finding an SVD suggests that v1, v2, . . . , vn are orthonormal
eigenvectors of AT A corresponding to the eigenvalues η2

1 , η2
2 , . . . , η2

n. This so far
is only a conjecture, because the matrix A (usually) has many SVDs, and we do
not know if any of our two SVDs is the one constructed by the algorithm! But
maybe this conjecture holds for every SVD?

It turns out that it does. The vectors v1, v2, . . . , vn are indeed orthonormal
eigenvectors of AT A corresponding to the eigenvalues η2

1 , η2
2 , . . . , η2

n. To see this,
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we only need to show that they are eigenvectors for these eigenvalues (because
we already know that they are orthonormal2). So, we must show that for every
i ∈ {1, 2, . . . , n}, the vector vi is an eigenvector of AT A corresponding to the
eigenvalue η2

i . To prove this, we recall that A = UΣVT, so that AT = VΣTUT

(by problem 1 (a)), so that

AT︸︷︷︸
=VΣTUT

A︸︷︷︸
=UΣVT

V = VΣT UTU︸ ︷︷ ︸
=I

(since U
is orthogonal)

Σ VTV︸︷︷︸
=I

(since V
is orthogonal)

= VΣT IΣI = V ΣTΣ︸︷︷︸
=diag(η2

1 ,η2
2 ,...,η2

n)

= V diag
(

η2
1 , η2

2 , . . . , η2
n

)
.

But vi is the i-th column of V, so that

AT Avi = AT A (the i-th column of V) =

the i-th column of AT AV︸ ︷︷ ︸
=V diag(η2

1 ,η2
2 ,...,η2

n)


=
(

the i-th column of V diag
(

η2
1 , η2

2 , . . . , η2
n

))
= η2

i (the i-th column of V)︸ ︷︷ ︸
=vi

= η2
i vi.

So, yes, vi is an eigenvector of AT A corresponding to the eigenvalue η2
i . But the

same argument (with Ũ and Ṽ taking the roles of U and V) shows that ṽi, too,
is an eigenvector of AT A corresponding to the eigenvalue η2

i . So both vi and
ṽi are eigenvectors of AT A corresponding to the eigenvalue η2

i . But (1) shows
that there exists only one such eigenvector, up to scaling. Hence, vi and ṽi are
equal up to scaling. Since vi and ṽi are length-1 vectors (being columns of the
orthogonal matrices V and Ṽ), this leaves only two possibilities: either ṽi = vi
or ṽi = −vi. In other words, we have ṽi = sivi for some si ∈ {1,−1}.

We have shown this for every i ∈ {1, 2, . . . , n}. In other words, for every
i ∈ {1, 2, . . . , n}, there exists an si ∈ {1,−1} such that ṽi = sivi. This shows that
the matrix Ṽ is obtained from the matrix V by multiplying some columns by −1.

Now, we need to prove that the matrix Ũ is obtained from the matrix U by
multiplying the same columns by −1. In other words, we need to show that
every i ∈ {1, 2, . . . , n} satisfies ũi = sivi for the very same si that we have just
constructed.

Here we need to use the assumption that all σi are nonzero (this would not be
true otherwise, as I have painfully learned myself). This assumption shows that
all the ηi are nonzero (remember that the η1, η2, . . . , ηn are the σ1, σ2, . . . , σn in a
possibly different order). Now, fix i ∈ {1, 2, . . . , n}. Then,

(the i-th column of AV) = A (the i-th column of V)︸ ︷︷ ︸
=vi

= Avi,

2because they are the columns of the orthogonal matrix V
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so that

Avi =

the i-th column of A︸︷︷︸
=UΣVT

V

 =

the i-th column of UΣ VTV︸︷︷︸
=I

(since V
is orthogonal)


= (the i-th column of UΣI) =

the i-th column of U Σ︸︷︷︸
=diag(η1,η2,...,ηn)


= (the i-th column of U diag (η1, η2, . . . , ηn))

= ηi (the i-th column of U)︸ ︷︷ ︸
=ui

= ηiui,

and thus ui =
1
ηi

Avi. (We were allowed to divide by ηi since ηi is nonzero.)

Similarly, ũi =
1
ηi

Aṽi. Since ṽi = sivi, this becomes ũi =
1
ηi

Asivi = si
1
ηi

Avi︸ ︷︷ ︸
=ui

=

siui. This proves what we wanted to.

ad problem 4:
Let us call the matrix A. This matrix is symmetric, so it makes sense to speak

of its positive definiteness.
Let us recall that a symmetric n× n-matrix B is positive definite if and only if

all n upper-left determinants of B are positive.3 Applying this to our 3× 3-matrix
A, we see that A is positive definite if and only if its upper-left determinants

det (1) = 1,

det
(

1 u
u 1

)
= 1− u2, and

det

 1 u 0
u 1 u
0 u 1

 = 1− 2u2

are positive. This boils down to the inequalities 1− u2 > 0 and 1− 2u2 > 0.

3Recall that the k-th upper-left determinant of B (for 1 ≤ k ≤ n) is the determinant of the matrix
obtained by taking only the first k rows and the first k columns of B. For instance, the 2-nd

upper-left determinant of

 1 2 4
2 6 4
4 4 3

 is det
(

1 2
2 6

)
= 2. The n-th upper-left determi-

nant of B is det B, and the 1-st upper-left determinant of B is the first entry of the first row of
B.
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These two inequalities hold if and only if we have −
√

2
2

< u <

√
2

2
. Hence, the

answer is “for those u which satisfy −
√

2
2

< u <

√
2

2
”.

ad problem 5:
Assume that the two symmetric matrices A and B are similar.
We know that any symmetric matrix can be diagonalized orthogonally. Thus,

A can be diagonalized orthogonally; i.e., there exists an orthogonal matrix P
such that P−1AP is diagonal. By suitably permuting the columns of P (which
are an orthonormal set of eigenvectors of A), we can make sure that the diagonal
entries of P−1AP appear in decreasing order (because once we have found n
orthonormal eigenvectors for A, we can reorder them to match any order of the
eigenvalues that we choose). So we conclude that there exists an orthogonal
matrix P such that the matrix P−1AP is diagonal and its diagonal entries appear
in decreasing order. Similarly, there exists an orthogonal matrix Q such that the
matrix Q−1BQ is diagonal and its diagonal entries appear in decreasing order.
Let us consider these P and Q.

The matrix P−1AP is diagonal, and thus its diagonal entries are its eigen-
values. But its eigenvalues are precisely the eigenvalues of A (since P−1AP is
similar to A), and those in turn are precisely the eigenvalues of B (since A is
similar to B), and those again are the eigenvalues of Q−1BQ (since B is similar
ot Q−1BQ), and these in turn are the diagonal entries of Q−1BQ (since Q−1BQ
is a diagonal matrix). So the diagonal entries of P−1AP are the same as the di-
agonal entries of Q−1BQ, possibly up to order. But their order is also the same
(recall that the diagonal entries appear in decreasing order in both P−1AP and
Q−1BQ). Hence, the diagonal entries of P−1AP are the same as the diagonal
entries of Q−1BQ, entry by entry. Thus, P−1AP = Q−1BQ (since all other entries
of these matrices are 0). Multiplying this equality by P from the left and by P−1

from the right, we obtain A = PQ−1BQP−1.
Now, take M = PQ−1. Then,

MT M =
(

PQ−1
)T

︸ ︷︷ ︸
=(Q−1)

T
PT

PQ−1 =
(

Q−1
)T

︸ ︷︷ ︸
=(QT)

−1

PTP︸︷︷︸
=I

(since P is
orthogonal)

Q−1 =
(

QT
)−1

IQ−1

=
(

QT
)−1

Q−1 =

 QQT︸ ︷︷ ︸
=I

(since Q is
orthogonal)


−1

= I−1 = I,

so that M is orthogonal. Also, A = PQ−1︸ ︷︷ ︸
=M

B QP−1︸ ︷︷ ︸
=(PQ−1)

−1
=M−1

= MBM−1. So we
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are done.

ad problem 6:
(a) Assume that A is invertible. (If B is invertible, you can just switch A with

B and do the same argument.) Then, A (BA) A−1 = AB
(

AA−1
)

︸ ︷︷ ︸
=I

= ABI = AB.

Thus, BA is similar to AB, and we are done.

(b) No. For an example, take A =

(
0 1
0 0

)
and B =

(
0 0
0 1

)
. Then,

AB =

(
0 1
0 0

)
and BA =

(
0 0
0 0

)
. The matrix BA is the zero matrix, which

is only similar to itself, and thus not similar to the nonzero matrix AB.

ad problem 7:
I will give very little detail on this problem. See the solution to Exercise 0.2 on

Darij’s review problems for exam #34 for an example of how to argue linearity.
(a) The map T1 is not linear, as it maps the zero polynomial 0 to the nonzero

polynomial 2.
(b) The map T2 is linear. (For example, it satisfies the second axiom because

T2 ( f + g) = 2 ( f + g) (x) = 2 f (x)︸ ︷︷ ︸
=T2( f )

+ 2g (x)︸ ︷︷ ︸
=T2(g)

= T2 ( f ) + T2 (g).)

(c) The map T3 is linear.
(d) The map T4 is linear.
(e) The map T5 is linear.
(f) The map T6 is not linear. (It fails the second axiom, because T6 (1 + 1) 6=

T6 (1) + T6 (1). Indeed, T6 (1 + 1) = T6 (2) = 22 = 4 whereas T6 (1) = 12 = 1.)
(g) The map T7 is linear. (This is mainly due to the fact that ( f + g)′′ = f ′′+ g′′

and (α f )′′ = α f ′′ for a scalar α.)
(h) The map T8 is linear.
[If you find some of these answer paradoxic, remind yourself that f (and

not x) is what is being transformed by the maps! So linear means “linear in
f ”, not “linear in x” (whatever this would be). Does adding two f ’s and then
applying the map give the same result as applying the maps to the two f ’s and
then adding the results? Does scaling an f and then applying the map give the
same result as applying the map to f and then scaling the result? These are
the questions you should be asking yourself here. The map T5, for example,
transforms a polynomial f by replacing every x in f by x2. This is perfectly
linear in f , although it produces polynomials with lots of squares inside.]

ad problem 8:

4http://web.mit.edu/18.06/www/Fall14/Midterm3ReviewF14_Darij.pdf
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For this problem and also for the next two, all that is needed is in Definition 0.5
in Michael’s recitation #105 and on the first two pages of Darij’s review problems
for exam #36. I will thus be rather brief.

We have

T (1) = (2 + x) 1 +
∫ x

0
1dt = 2x + 2 = 2 · 1 + 2 · x + 0 · x2 + 0 · x3;

T (x) = (2 + x) x +
∫ x

0
tdt =

3
2

x2 + 2x = 0 · 1 + 2 · x +
3
2
· x2 + 0 · x3;

T
(

x2
)
= (2 + x) x2 +

∫ x

0
t2dt =

4
3

x3 + 2x2 = 0 · 1 + 0 · x + 2 · x2 +
4
3
· x3.

Thus, the matrix representing the map T with respect to our basis is
2 0 0
2 2 0

0
3
2

2

0 0
4
3

 .

ad problem 9:

Denote the four matrices which form this basis by v1, v2, v3, v4 (so v1 =

(
1 0
0 0

)
,

v2 =

(
0 1
0 0

)
, v3 =

(
0 0
1 0

)
and v4 =

(
0 0
0 1

)
). Note that these matrices

now serve as vectors. You have worked with column vectors and row vectors all
the time, but the general meaning of the word “vector” is “element in a vector
space”, and such elements can be numbers, column-vectors, polynomials or (as
you are seeing here) matrices.

The map T takes a matrix and transposes it. So

T (v1) = T
((

1 0
0 0

))
=

(
1 0
0 0

)T

=

(
1 0
0 0

)
= 1v1 + 0v2 + 0v3 + 0v4;

T (v2) = T
((

0 1
0 0

))
=

(
0 1
0 0

)T

=

(
0 0
1 0

)
= 0v1 + 0v2 + 1v3 + 0v4;

T (v3) = T
((

0 0
1 0

))
=

(
0 0
1 0

)T

=

(
0 1
0 0

)
= 0v1 + 1v2 + 0v3 + 0v4;

T (v4) = T
((

0 0
0 1

))
=

(
0 0
0 1

)T

=

(
0 0
0 1

)
= 0v1 + 0v2 + 0v3 + 1v4.
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Thus, the matrix representing the map T with respect to our basis is the 4× 4-
matrix 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

ad problem 10:
One possible choice for a basis is (v1, v2), where v1 = (1,−1, 0) and v2 =

(1, 0,−1). Then,

T (v1) = T ((1,−1, 0)) = (−1, 0, 1) = 0v1 + (−1) v2;
T (v2) = T ((1, 0,−1)) = (0,−1, 1) = 1v1 + (−1) v2.

Thus, the matrix representing the map T with respect to this basis is(
0 1
−1 −1

)
.

[You might have chosen a different basis, and obtained a different matrix.
However, notice that your matrix must be similar to my matrix. In particular, it
has the trace −1 and the same determinant 1.]
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