Your PRINTEI	name is:	
--------------	----------	--

Please circle your recitation:		Grading		
R01	Т 9	E17-136	Darij Grinberg	1
R02	T 10	E17-136	Darij Grinberg	
R03	T 10	24-307	Carlos Sauer	2
R04	T 11	24-307	Carlos Sauer	
R05	T 12	E17-136	Tanya Khovanova	3
R06	T 1	E17-139	Michael Andrews	
R07	T 2	E17-139	Tanya Khovanova	4
				Total:

Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to get a full credit. Explain how you obtained the answer.

Problem 1. Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (a) Find the eigenvalues λ_1 and λ_2 of A.
- (b) Solve the initial value problem $d\mathbf{u}/dt = A\mathbf{u}$, $\mathbf{u}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

(c) Find a diagonal matrix which is similar to the matrix A.

(d) Find the singular values σ_1 and σ_2 of A.

(e) Is the matrix A positive definite?

\mathbf{Pro}	Oblem 2. True or false? If your answer is "true", explain why. If your answer is "false",
give	a counterexample.
(a)	Every positive definite matrix is nonsingular.
	If A is an $n \times n$ matrix with real eigenvalues and with n linearly independent eigenvectors ch are orthogonal to each other, then A is symmetric.
(c)	If a matrix B is similar to A , then B has the same eigenvectors as A .
(d)	Any symmetric matrix is similar to a diagonal matrix.
(e)	Any matrix which is similar to a diagonal matrix is symmetric.

Problem 3. (a–c) Consider the matrix
$$A = \begin{pmatrix} 2 & t & 0 \\ t & 2 & t \\ 0 & t & 2 \end{pmatrix}$$
 that depends on a parameter t .

(a) Find all values of t, for which the matrix A has 3 nonzero eigenvalues.

(b) Find all values of t, for which the matrix A has 3 positive eigenvalues.

- (c) Find all values of t, for which the matrix A has 3 negative eigenvalues.
- (d) Find a singular value decomposition $B = U\Sigma V^T$ for the matrix $B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

(e) Find orthonormal bases of the 4 fundamental subspaces of the matrix B from part (d).

(a-d) Consider the following operations on the space of quadratic polynomials $f(x) = ax^2 + bx + c$. Which of them are linear transformations? If they are linear transformations, find their matrices in the basis $1, x, x^2$.

If they are not linear transformations, explain it using the definition of linear transformation.

(a)
$$T_1(f) = f(x) - f(1)$$
.

(b)
$$T_2(f) = f(x) - 1$$
.

(c)
$$T_3(f) = x - f(1)$$
.

(d)
$$T_4(f) = x^2 f(1/x)$$
.

(e) The linear transformation $R: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection with respect to the line x+y=0. Find the matrix of R in the standard basis of \mathbb{R}^2 .

If needed, you can use this extra sheet for your calculations.

If needed, you can use this extra sheet for your calculations.