Your PRINTED name is: _____

Please circle your recitation:

Grading

R01	Т9	E17-136	Darij Grinberg	1
R02	T 10	E17-136	Darij Grinberg	2
R03	T 10	24-307	Carlos Sauer	
R04	T 11	24-307	Carlos Sauer	
R05	T 12	E17-136	Tanya Khovanova	3
R06	Τ1	E17-139	Michael Andrews	
R07	Τ2	E17-139	Tanya Khovanova	4

Total:

Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to get a full credit. Explain how you obtained the answer.

Problem 1. (a) Do Gram-Schmidt orthogonalization for the vectors $\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}$. (Find an orthogonal basis. Normalization is not required.)

(b) Find the
$$A = QR$$
 decomposition for the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

(c) Find the projection of the vector
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 onto the line spanned by the vector $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

(d) Find the projection of the vector
$$\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$
 onto the plane $x + y + z = 0$ in \mathbb{R}^3 .

(e) Find the least squares solution
$$\widehat{\mathbf{x}}$$
 for the system

$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 10 \\ 0 \end{pmatrix}.$$

Problem 2. Let $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$. (a) Calculate the determinant det(A).

(b) Explain why A is an invertible matrix. Find the entry (2,3) of the inverse matrix A^{-1} .

(c) Notice that all sums of entries in rows of A are the same. Explain why this implies that $(1, 1, 1)^T$ is an eigenvector of A. What is the corresponding eigenvalue λ_1 ?

(d) Find two other eigenvalues λ_2 and λ_3 of A.

(e) Find the projection matrix P for the projection onto the column space of A.

Problem 3.

(a) Calculate the area of the triangle on the plane \mathbb{R}^2 with the vertices (1,0), (0,1), (3,3) using determinants.

(b) Find all values of x for which the matrix $A = \begin{pmatrix} 1 & x \\ 1 & 1 \end{pmatrix}$ has an eigenvalue equal to 2.

(c) Diagonalize the matrix
$$B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
.

(d) Calculate the power
$$B^{2014}$$
 of the matrix $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$.

(e) Let Q be any matrix which is symmetric and orthogonal. Find Q^{2014} . Explain your answer.

Problem 4. Consider the Markov matrix
$$A = \begin{pmatrix} 0 & 1/3 & 1/3 & 0 \\ 1/2 & 0 & 1/3 & 1/2 \\ 1/2 & 1/3 & 0 & 1/2 \\ 0 & 1/3 & 1/3 & 0 \end{pmatrix}$$

(a) Three of the eigenvalues of A are 1, 0, -1/3. Find the fourth eigenvalue of A.

- (b) Find the determinant det(A).
- (c) Find the eigenvector of the transposed matrix A^T with the eigenvalue $\lambda_1 = 1$.

(d) Find the eigenvector of the matrix A with the eigenvalue $\lambda_1 = 1$. (Hint: Notice that nonzero entries in each column of A are the same.)

(e) Find the limit of $A^k (1 \ 0 \ 0 \ 0)^T$ as $k \to +\infty$.

If needed, you can use this extra sheet for your calculations.

If needed, you can use this extra sheet for your calculations.