Your PRINTED name is: _____

Please circle your recitation:

Grading

R01	Т9	E17-136	Darij Grinberg	1
R02	T 10	E17-136	Darij Grinberg	
R03	T 10	24-307	Carlos Sauer	2
R04	T 11	24-307	Carlos Sauer	
R05	T 12	E17-136	Tanya Khovanova	3
R06	Τ1	E17-139	Michael Andrews	
R07	Τ2	E17-139	Tanya Khovanova	4

Total:

Each problem is 25 points, and each of its five parts (a)–(e) is 5 points.

In all problems, write all details of your solutions. Just giving an answer is not enough to get a full credit. Explain how you obtained the answer.

Problem 1. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 7 & 10 \end{pmatrix}$. (a) Find the A = LU factorization of the matrix A.

(b) Solve the system $A \mathbf{x} = (3, 10, 20)^T$.

Let $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 7 & k \end{pmatrix}$ (obtained by replacing the bottom right entry of A by parameter k).

(c) For which values of k is the matrix B singular?

(d) Find all values of k for which the system $B \mathbf{x} = (1, 2, 3)^T$ has infinitely many solutions. (You don't need to solve the system in this part.)

(e) Find all values of k for which the system $B \mathbf{x} = (10, 1, 2014)^T$ has exactly one solution. (You don't need to solve the system in this part.)

Which of the following sets of vectors are vector subspaces of \mathbb{R}^3 ? Explain Problem 2. your answer?

(a) All vectors $(x, y, z)^T$ such that 10x + y + 2014z = 0.

(b) All vectors $(x, y, z)^T$ such that $x + y + z \le 2014$.

(c) All vectors $(x, y, z)^T$ such that x + y + z = 0 AND x + 2y + 3z = 0.

(d) All vectors $(x, y, z)^T$ such that x + y + z = 0 OR x + 2y + 3z = 0.

(e) All vectors $(b_1, b_2, b_3)^T$ such that the system $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $\mathbf{x} = (b_1, b_2, b_3)^T$ has a solution.

(You don't need to solve the system in this part.

Problem 3. Let $A = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 & 3 \\ -1 & -2 & 0 & 2 & 3 \end{pmatrix}$.

(a) Find the complete solution of $A \mathbf{x} = \mathbf{0}$.

(b) Find the complete solution of $A \mathbf{x} = (1, 2, 0)^T$.

(c) Find the linear condition(s) on b_1, b_2, b_3 that guarantee that the system $A \mathbf{x} = (b_1, b_2, b_3)^T$ has a solution.

(d) Find the rank of A and dimensions of the four fundamental subspaces of A.

(e) Find bases of the four fundamental subspaces of A.

Problem 4. Which of the following statements are true? Explain your answer.

(a) Matrices A and R = RREF(A) always have the same column space C(A) = C(R).

(b) Matrices A and R = RREF(A) always have the same row space $C(A^T) = C(R^T)$.

(c) If A is an $m \times n$ matrix with linearly independent columns, then $m \ge n$.

(d) If A is an $m \times n$ matrix of rank r = m, then the left nullspace $N(A^T)$ contains only the zero vector **0**.

(e) If two $m \times n$ matrices A and B have exactly the same 4 fundamental subspaces $C(A) = C(B), \quad N(A) = N(B), \quad C(A^T) = C(B^T), \quad N(A^T) = N(B^T),$ then A = B. (Prove that A = B or give a counterexample where $A \neq B$.) If needed, you can use this extra sheet for your calculations.

If needed, you can use this extra sheet for your calculations.