Exam Solutions

Problem 1

Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 7 & 10 \end{pmatrix}$.

(a) Find the A = LU factorization of the matrix A.

(b) Solve the system $Ax = (3, 10, 20)^T$.

Let $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 7 & k \end{pmatrix}$ (obtained by replacing the bottom right entry by the parameter k).

(c) For which values of k is the matrix B singular?

- (d) Find all values of k for which the system $Bx = (1, 2, 3)^T$ has infinitely many solutions.
- (e) Find all values of k for which the system $Bx = (10, 1, 2014)^T$ has exactly one solution.

Answers:

Let's put the matrix $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 7 & k \end{pmatrix}$ into LU form.

We get $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 4 & k-3 \end{pmatrix}$ by subtracting 2 lots of row 1 from row 2 and 3 lots of row 1 from row 3. We get $U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & k-7 \end{pmatrix}$ by subtracting 2 lots of row 2 from row 3. We see $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$.

- (a) By setting k = 10 we obtain A = LU where $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$ and $U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$.
- (b) We spot that (1,1,1)^T is a solution. L and U are invertible since their diagonals are nonzero and so A is invertible. Thus, this is the only solution.
 Alternatively, we can solve Lc = (3, 10, 20)^T via substitution to give c = (3, 4, 3) and Ux = c = (3, 4, 3)^T via substitution to give x = (1, 1, 1)^T.
- (c) B is singular if and only if U is singular. U is singular if and only if the last row is zero, i.e. if k = 7.
- (d) This equation always has a solution since the first column is $(1,2,3)^T$. When $k \neq 7$ the matrix is invertible and there is only one solution. When k = 7 the vector $(0,1,-1)^T$ is in the nullspace, so there are infinitely many solutions: in fact, we can see that the solutions are $(1,0,0)^T + c(0,1,-1)$ for $c \in \mathbb{R}$.
- (e) When $k \neq 7$ the matrix B is invertible so there exists exactly one solution.

Problem 2

Which are of the following sets of vectors are vector subspaces of \mathbb{R}^3 ? Explain your answer.

- (a) All vectors $(x, y, z)^T$ such that 10x + y + 2014z = 0
- (b) All vectors $(x, y, z)^T$ such that $x + y + z \le 2014$.
- (c) All vectors $(x, y, z)^T$ such that x + y + z = 0 AND x + 2y + 3z = 0.
- (d) All vectors $(x, y, z)^T$ such that x + y + z = 0 OR x + 2y + 3z = 0.

(e) All vectors
$$(b_1, b_2, b_3)^T$$
 such that $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} x = (b_1, b_2, b_3)^T$ has a solution.

Answers:

- (a) Yes: this is the null space of the 3×1 matrix $(10 \ 1 \ 2014)$.
- (b) No: (1,0,0) is in the set under consideration but 2015(1,0,0) is not.
- (c) Yes: this is the null space of the 3×2 matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$.
- (d) No: (-1, 0, 1) and (1, 1, -1) are in the set under consideration but their sum (0, 1, 0) is not.
- (e) Yes: this is the column space of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

Problem 3

Let
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 & 3 \\ -1 & -2 & 0 & 2 & 3 \end{pmatrix}$$

- (a) Find the complete solution of Ax = 0.
- (b) Find the complete solution of $Ax = (1, 2, 0)^T$.
- (c) Find the linear condition(s) on b_1, b_2, b_3 that guarantee that the system $Ax = (b_1, b_2, b_3)^T$ has a solution.
- (d) Find the rank of A and dimensions of the four subspaces of A.
- (e) Find bases of the four fundamental subspaces of A.

Answers:

Let's put the matrix $\begin{pmatrix} 1 & 2 & 1 & 0 & 0 & b_1 \\ 1 & 2 & 2 & 2 & 3 & b_2 \\ -1 & -2 & 0 & 2 & 3 & b_3 \end{pmatrix}$ into RREF. We get $\begin{pmatrix} 1 & 2 & 1 & 0 & 0 & b_1 \\ 0 & 0 & 1 & 2 & 3 & b_2 - b_1 \\ 0 & 0 & 1 & 2 & 3 & b_1 + b_3 \end{pmatrix}$ followed by $\begin{pmatrix} 1 & 2 & 0 & -2 & -3 & 2b_1 - b_1 \\ 0 & 0 & 1 & 2 & 3 & b_2 - b_1 \\ 0 & 0 & 0 & 0 & 0 & 2b_1 - b_2 + b_3 \end{pmatrix}$.

(a) We read of the special vectors as

$$x_1 = (-2, 1, 0, 0, 0)^T$$
, $x_2 = (2, 0, -2, 1, 0)^T$ and $x_3 = (3, 0, -3, 0, 1)^T$.

The complete solution to Ax = 0 is $x = c_1x_1 + c_2x_2 + c_3x_3$ for $c_1, c_2, c_3 \in \mathbb{R}$.

- (b) Let $x_p = (0, 0, 1, 0, 0)^T$. Then $Ax_p = (1, 2, 0)^T$ so that the complete solution to $Ax = (1, 2, 0)^T$ is $x = x_p + c_1x_1 + c_2x_2 + c_3x_3$ for $c_1, c_2, c_3 \in \mathbb{R}$.
- (c) We read of the linear combination of b_1, b_2 and b_3 in the zero row above: $2b_1 b_2 + b_3 = 0$ is the condition that guarantees $Ax = (b_1, b_2, b_3)^T$ has a solution.
- (d) We see there are two pivot columns in RREF(A) and so the rank of A is 2. Thus dim $C(A) = \dim C(A^T) = 2$, dim N(A) = 5 2 = 3, and dim $N(A^T) = 3 2 = 1$.
- (e) To give a basis for C(A) we read of the the columns corresponding to pivot columns in RREF: { $(1, 1, -1)^T, (1, 2, 0)^T$ }. We already computed a basis for N(A) in a): { x_1, x_2, x_3 }. To give a basis for $C(A^T)$ we find two independent rows:

$$\{(1, 2, 1, 0, 0)^T, (1, 2, 2, 2, 3)^T\}.$$

To give a basis for $N(A^T)$ we read off the coefficients of the relation in b): $\{(2, -1, 1)^T\}$.

Problem 4

Which of the following statements are true? Explain your answer.

- (a) Matrices A and R = RREF(A) always have the same column space C(A) = C(R).
- (b) Matrices A and R = RREF(A) always have the same row space $C(A^T) = C(R^T)$.
- (c) If A is an $m \times n$ matrix with linearly independent columns, then $m \ge n$.
- (d) If A is an $m \times n$ matrix of rank r = m, the left nullspace $N(A^T)$ contains only the zero vector 0.
- (e) If two $m \times n$ matrices A and B have the same 4 fundamental spaces

$$C(A) = C(B), \ N(A) = N(B), \ C(A^T) = C(B^T), \ N(A^T) = N(B^T),$$

then A = B.

Answers:

- (a) No. The matrices $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $R = REEF(A) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ have different column spaces.
- (b) Yes. Row operations do not alter the row space.
- (c) Yes. If A has linearly independent columns, then the column space has dimension n. But the column space is a subspace of \mathbb{R}^m , which has dimension m. Thus $n \leq m$.
- (d) Yes. r = m tells us that the rows are independent, so that $N(A^T) = 0$. Alternatively, we can note that dim $N(A^T) = m r = 0$
- (e) No. I and 2I have the same fundamental spaces.