
18.06 (Fall '13) PSet 8 Solutions

Exercise 1. Do Problem 7 from 6.3. Suppose P is the projection matrix onto the 45◦

line y = x in R2. What are its eigenvalues? If du/dt = −Pu (notice minus sign) can you

�nd the limit of u(t) at t =∞ starting from u(0) = (3, 1)?

Solution. Any projection matrix has eigenvalues 1 and 0. In this particular case, the

projection is a 2 by 2 matrix with 1-dimensional column space (a y = x line). That means

any vector on the line has eigenvalue 1 for the matrix P . For example, a vector (1, 1) will

do. The nullspace is also one-dimensional. The nullspace is orthogonal to the column space,

so we can choose the vector (1,−1) from the nullspace.

The starting vector (3, 1) can be represented as a linear combination of eigenvectors:

(3, 1) = (2, 2) + (1,−1). Now, we need to remember that our matrix is −P , so the corre-

sponding eigenvalues for vectors (2, 2) and (1,−1) are −1 and 0. The solution is:

u(t) = e−t
[
2
2

]
+ e0t

[
1
−1

]
.

When t tends to ∞ the result is: [
1
−1

]
.

Exercise 2. Do Problem 26 from 6.3. Give two reasons why the matrix exponential

eAt is never singular:

(a) Write down its inverse.

(b) Write down its eigenvalues. If Ax = λx then EAtx = x.

Solution.

(a) The inverse of eAt is e−At.

(b) If Ax = λx then eAtx = eλtx.

Exercise 3. Do Problem 31 from 6.3. The cosine of a matrix is de�ned like eA, by
copying the series for cos t:

cos t = 1− 1

2!
t2 +

1

4!
t4 − · · · cosA = I − 1

2!
A2 +

1

4!
A4 − · · ·

(a) If Ax = λx, multiply each term times x to �nd the eigenvalue of cosA.

(b) Find the eigenvalues of A = [ π ππ π [ with the eigenvectors (1, 1) and (1,−1). From the

eigenvalues and eigenvectors of cosA, �nd that matrix C = cosA.

(c) The second derivative of cos(At) is −A2 cos(At).

u(t) = cos(At)u(0) solves
d2u

dt2
= −A2u staarting from u′(0) = 0.

Construct u(t) = cos(At)u(0) by the usual three steps for that speci�c A:
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1. Expand u(0) = (4, 2) = c1x1 + c2x2 in the eigenvectors.

2. Multiply those eigenvectors by and (instead of eλt).

3. Add up the solution u(t) = c1 x1 + c2 x2.

Solution.

(a) If Ax = λx, then (cosA)x = (cosλ)x.

(b) The eigenvectors (1, 1) and (1,−1) have eigenvalues 2π and 0 correspondingly. There-

fore, the eigenvalues of cosA are cos(2π) = 1 and cos 0 = 1. Hence, C = cosA = I.

(c) 1. u(0) = (4, 2) = 3(1, 1) + 1(1,−1).

2. Multiply those eigenvectors by cos(2πt) and cos(0t) (instead of eλt).

3. Add up the solution u(t) = 3 cos(2πt)(1, 1) + (1,−1).

Exercise 4. Do Problem 8 from 6.4. If A3 = 0, then the eigenvalues of A must be

. Give an example that has A 6= 0. But if A is symmetric, diagonalize it to prove

that A must be zero.

Solution. If λ is an eigenvalue of A, then λ3 = 0, therefore, λ = 0. The simplest

example of A, such that A is non-zero and A3 = 0, is A = [ 0 1
0 0 ]. If A is diagonalizable, then

A = QΛQT , where Λ is a diagonalization of A. Then 0 = A3 = QΛ3QT . Hence Λ3 = 0.
Since Λ is diagonal it follows that Λ = 0. Therefore, A = 0.

Exercise 5. Do Problem 21 from 6.4. True (with reason) or false (with example).

�Orthonormal� is not assumed.

(a) A matrix with real eigenvalues and eigenvectors is symmetric.

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.

(c) The inverse of a symmetric matrix is symmetric.

(d) The eigenvector matrix S of a symmetric matrix is symmetric.

Solution.

(a) False. For example, A = [ 0 1
0 0 ].

(b) False. For example, the matrix A = [ 0 1
0 0 ] has one eigenvector, but is not symmetric.

On the other hand, if the number of eigenvectors is the same as the size of the matrix,

then this is true. Indeed, in this case the eigenvector matrix S is an orthogonal matrix

Q, and A = SΛS−1 = QΛQT , where Λ is diagonal. Then AT = QΛTQT = QΛQT = A.

(c) True. Let us transpose the equality I = AA−1, where A is symmetric. We get: I =
IT = (AA−1)T = (A−1)TAT = (A−1)TA. Hence (A−1)T is the inverse of A. Therefore,
(A−1)T = A−1.

(d) False. For example, a symmetric matrix A = [ 1 1
1 1 ] can have a non-symmetric matrix[

1 1
−1 1

]
as S.
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Exercise 6. Do Problem 30 from 6.4. If λmax is the largest eigenvalue of a symmetric

matrix A, no diagonal entry can be larger than λmax. What is the �rst entry a11 of

A = QΛQT ? Show why a11 ≤ λmax.

Hint: write a11 in terms of the entries of Λ and Q, then use the fact that λi ≤ λmax for

all i.

Solution. a11 = [q11 . . . q1n][λ1q11 . . . λnq1n]T ≤ λmax(|q11|2 + · · ·+ |q1n|2) = λmax).

Exercise 7. Do Problem 10 from 6.5. Which 3 by 3 symmetric matrices A and B
produce these quadratics?

xTAx = 2(x21 + x22 + x23 − x1x2 − x2x3). Why is A positive de�nite?

xTBx = 2(x21 + x22 + x23 − x1x2 − x1x3 − x2x3). Why is B semide�nite?

Solution.

A =

 2 −1 0
−1 2 −1
0 −1 2

 B =

 2 −1 −1
−1 2 −1
−1 −1 2

 .
There are many ways to check this. One way is to check pivots. Pivots of A are 2, 3/2, and
4/3: all positive, so A is positive de�nite. Pivots of B are 2, 3/2, and 0: all non-negative,

so B is semide�nite. Another way is to check upper left determinants. For A they are 2, 5,

and 4: all positive. For B they are 2, 5, and 0: all non-negative.

Exercise 8. Do Problem 12 from 6.5. For what numbers c and d are A and B positive

de�nite? Test the 3 determinants:

A =

c 1 1
1 c 1
1 1 c

 and B =

1 2 3
2 d 4
3 4 5

 .
Solution. Left upper determinants of A are c, c2−1 = (c−1)(c+1), and c3−3x+2 =

(c− 1)2(c+ 2). They are all positive for c > 1. Left upper determinants for B are 1, d− 4,
and −4d+ 12. The are never positive at the same time. So B is never positive de�nite.

Exercise 9. Do Problem 21 from 6.5. For which s and t do A and B have all λ > 0
(therefore positive de�nite)? (use the eigenvalues)

A =

 s −4 −4
−4 s −4
−4 −4 s

 and B =

t 3 0
3 t 4
0 4 t

 .
Solution. The characteristic polynomials of A and B are: (s − λ)3 − 48(s − λ) − 128

and (t− λ)3 − 25(t− λ) correspondingly. The eigenvalues of A are: s+ 4, s+ 4 and s− 8.
They are all positive when s > 8. The eigenvalues of B are: t, t+ 5 and t− 5. They are all

positive when t > 5.

3



Exercise 10. Do Problem 3 from 6.5. For which numbers b and c are these matrices

positive de�nite?

A =

[
1 b
b 9

]
A =

[
2 4
4 c

]
A =

[
c b
b c

]
.

With the pivots in D and multiplier in L, factor each A into LDLT .

Solution. The LDLT forms are:[
1 0
b 1

] [
1 0
0 9− b2

] [
1 b
0 1

] [
1 0
2 1

] [
2 0
0 c− 8

] [
1 2
0 1

] [
1 0
b/c 1

] [
c 0
0 (c2 − b2)/c

] [
1 b/c
0 1

]
.

The �rst matrix is positive de�nite for −3 < b < 3, the second for c > 8, and the third for

both c > 0 and c2 − b2 > 0. The latter can be combined into c > |b|.
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