
18.06 (Fall '13) PSet 5 solutions

Exercise 1. In Section 4.2 of the textbook, you learned that if p is the projection of
the vector b onto the line a, then p is characterized by the fact that the line from p to
b is perpendicular to p. One might guess that this criterion extends to projections onto
subspaces of dimension > 1, but this is incorrect: In this question you'll demonstrate,
by example, that this approach leads to in�nitely many possible �projections�. (The right
criterion is that the line from p to b is perpendicular to every column of A.)

a) Let A be an m×n matrix, and let b be a vector in Rm. We'd like to �nd the projection
of b onto the column space of A. If p = Ax is in the column space of A, show that the
equation x must satisfy for the line from b to p to be perpendicular to p is

xTAT b = xTATAx.

b) Now suppose for example A is the m× 2 matrix
1 0
0 1
0 0
· · · · · ·
0 0

 .

Show that in this case, the above equation is just the equation of a circle. Describe
clearly the circle.

We'd like to have a unique projection, not a whole circle's worth of them. Thus we must
insist that the line from b to p be perpendicular to the entire column space of A.

Solution.

a) We are asked for the equation that guarantees that (b−Ax) and Ax are orthogonal. The
orthogonality means that (Ax)T (b − Ax) = 0. Hence, (Ax)T b = (Ax)TAx. It follows
that xTAT b = xTATAx.

b) It is easy to check that ATA = I, so xTAT b = xTx. In coordinates: x1b1+x2b2 = x21+x
2
2.

After massaging the equation we get: (x1 − b1/2)2 + (x2 − b2/2)2 = (b21 + b22)/4.

Exercise 2. Do Problem 9 from 4.3. For the closest parabola b = C + Dt + Et2

to the same four points, write down the unsolvable equations Ax = b in three unknowns
x = (C,D,E). Set up the three normal equations ATAx̂ = AT b (solution not required). In
Figure 4.9a you are now �tting a parabola to 4 points�what is happening in Figure 4.9b?

Solution. The problem refers to four points t = (0, 1, 3, 4) and b = (0, 8, 8, 20) from
the previous problems. Plugging in the four values for t into the parabola we get

A =


1 0 0
1 1 1
1 3 9
1 4 16

 .
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Thus, the three equations for C, D, and E are:

ATA

CD
E

 = Ab, or

 4 8 26
8 26 92
26 92 338

CD
E

 =

 36
112
400

 .
In Figure 4.9b we are building a projection of a vector in 4D onto a 3D plane.

Exercise 3. Do Problem 10 from 4.3. For the closest cubic b = C +Dt + Et2 + Ft3

to the same four points, write down the four equations Ax = b. Solve them by elimination.
In Figure 4.9a this cubic now goes exactly through the points. What are p and e?

Solution. The problem refers to four points t = (0, 1, 3, 4) and b = (0, 8, 8, 20) from
the previous problems. Plugging in the four values for t into the cubic we get

A =


1 0 0 0
1 1 1 1
1 3 9 27
1 4 16 64

 .
Thus, the four equations are:

ATA


C
D
E
F

 = Ab, or


4 8 26 92
8 26 92 338
26 92 338 1268
92 338 1268 4826



C
D
E
F

 =


36
112
400
1504

 .
The system has a unique solution C = 0, D = 47/3, E = −28/3, F = 5/3. Matrix A is

invertible, the column space is all the space. Hence, p = b and e = 0.

Exercise 4. Do Problem 12 from 4.3. This problem projects b = (b1, . . . , bm) onto the
line through a = (1, . . . , 1). We solve m equations ax = b in 1 unknown (by least squares).

(a) Solve atax̂ = atb to show that x̂ is the mean (the average) of the b's.

(b) Find e = b− ax̂ and the variance ‖e‖2 and the standard deviation ‖e‖.

(c) The horizontal line b̂ = 3 is closest to b = (1, 2, 6). Check that p = (3, 3, 3) is perpen-
dicular to e and �nd the 3 by 3 projection matrix P .

Solution.

(a) Plugging in the numbers into the formula we get: mx̂ = b1 + b2 + . . .+ bm, or x̂ is the
average of the b's.

(b) e = (b1 − x̂, b2 − x̂, . . . , bm − x̂). ‖e‖2 = (b1 − x̂)2 + (b2 − x̂)2 + . . . + (bm − x̂)2.
‖e‖ =

√
(b1 − x̂)2 + (b2 − x̂)2 + . . .+ (bm − x̂)2.

(c) e = b− p = (−2,−1, 3), ep = (−2) · 3 + (−1) · 3 + 3 · 3 = 0.

A =

11
1

 P = A(ATA)−1AT =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .
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Exercise 5. Do Problem 13 from 4.3. First assumption behind least squares: Ax =
b−(noise e with mean zero). Multiply the error vectors e = b − Ax by (ATA)−1AT to get
x̂ − x on the right. The estimation errors x̂ − x also average to zero. The estimates x̂ is
unbiased.

Solution. (ATA)−1AT (b − Ax) = (ATA)−1AT b − (ATA)−1ATAx = x̂ − x. When
e = b−Ax averages to 0, so does x̂− x.

Exercise 6. Do Problem 4 from 4.4. Give an example of each of the following:

(a) A matrix Q that has orthonormal columns but QQT 6= I.

(b) Two orthogonal vectors that are not linearly independent.

(c) An orthonormal basis for R3, including the vector q1 = (1, 1, 1)/
√
3.

Solution.

(a) Such a matrix has to be non-square. Indeed, for a square matrix QTQ = I. Hence,
QT = Q−1, and QQT = I. Here is an example:[

1
0

]
.

(b) Linear dependency of vectors v and w means that there are numbers a and b (both of
them can't be zero) such that av + bw = 0. From here 0 = (av + bw)T (av + bw) =
a2‖v‖2+b2‖w‖2, because they are orthogonal. Suppose a 6= 0, then v = 0. That means,
one of the vectors must be the zero vector.

(c) For example, q1 = (1, 1, 1)/
√
3, q1 = (1,−1, 0)/

√
2, q1 = (1, 1,−2)/

√
6.

Exercise 7. Do Problem 18 from 4.4. Find orthogonal vectors A,B,C by Gram-
Schmidt from a, b, c:

a = (1,−1, 0, 0) b = (0, 1,−1, 0) c = (0, 0, 1,−1).

Solution. A = a = (1,−1, 0, 0); B = b − p = (1/2, 1/2,−1, 0); C = c − pA − pB =
(1/3, 1/3, 1/3,−1).

Exercise 8. Do Problem 37 from 4.4. We know that P = QQT is the projection onto
the column space of Q(m by n). Now add another column a to produce A = [Q a]. What
is the new orthonormal vector q from Gram-Schmidt: start with a, subtract , divide
by .

To rephrase: Q has orthonormal columns. We want to perform Gram-Schmidt on

[Q a]

and we only need to change the �nal column.

Solution. Start with a, subtract the projection Pa, divide by the length of the result.
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Exercise 9. Use Julia or otherwise to compute the coe�cients of a best least squares �fth
degree approximation to y = sin(x) on [0, 2π].

In Julia you can execute the following code.

t=2*pi*(0:.01:1)

A = [t[i]^k for i=1:length(t), k=0:1:5];

c=float(A)\sin(t)

If you would like to see the approximation, you can evaluate the polynomial and plot
it:

x=(0:.001:1)*2*pi

z=0*x;

for i=length(c):-1:1

z=z.*x+c[i];

end

using PyPlot

plot(x,z)

plot(x,sin(x))

Solution. N/A

Exercise 10. Compare the quintic above to the best solution obtainable from a Taylor
series expansion of sinx: x − x3/6 + x5/120. Also compare with the Taylor series about
x = π: −(x− π) + (x− π)3/6− (x− π)5/120.

Solution. The sin function is symmetric on the interval from 0 to 2π with respect
to 180◦ rotation around the point (π, 0). The Taylor series are designed to approximate
functions locally. So the �rst expansion would be a good approximation around x = 0, but
not good overall, as it does not respect the symmetry. The second Taylor series is a good
approximation around x = π. In addition, the series respect the symmetry, so overall it is
a much better approximation.
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