September 26, 2013

18.06 Set 3 Solutions

1.

2.

3. Define e_i to be the *i*-th column of I, which is $n \times n$. The nullspace matrix of A has columns $e_i - e_{i+n}$ for i = 1, 2, ..., n. The nullspace matrix of B is the same. The nullspace matrix of C has columns $e_i - e_{i+n}$ for i = 1, 2, ..., n in addition to columns $e_{i+n} - e_{i+2n}$ for i = 1, ..., n, a total of 2n columns. 4.

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
$$b = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

5. The rref of A is

$$\left[\begin{array}{rrrr} 1 & 0 & -20/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{array}\right],$$

therefore the rank is 2. The rref of A^t is

$$\left[\begin{array}{rrrr} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right],$$

therefore the rank is 2. Partially reducing A with q we get

$$\left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & q-2 \end{array}\right],$$

so if $q \neq 2$, the matrix has rank 3, and otherwise it has rank 2. Partially reducing A^t with q we get

$$\left[\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & q-2 \end{array}\right],$$

which is the same situation.

6. a. $(1,1,1,1)^t$, b. It is $(1,-1,0,0)^t$, $(0,1,-1,0)^t$, $(0,0,1,-1)^t$. c. $(0,0,-1,1)^t$, $(1,-1,-1,0)^t$. d. The column space has basis $(1,0,0,0)^t$, $(0,1,0,0)^t$, $(0,0,1,0)^t$, $(0,0,0,1)^t$, the basis of the nullsapce is the empty set. 7. Let

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$A_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$A_{5} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
$$A_{6} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The trick is $A_1 + A_5 + A_6 = A_2 + A_3 + A_4$ which is the matrix of all 1's, so $A_1 = A_2 + A_3 + A_4 - A_5 - A_6$. Now let $c \in \mathbb{R}^{\not =}$ such that $c_2A_2 + c_3A_3 + c_4A_4 + c_5A_5 + c_6A_6 = 0$ (there is no c_1 , c is indexed from 2 to 6). c_2 must be 0 since A_2 has a 1 in the lower right hand corner and no other A_i has that for $i \neq 1$. Likewise c_3 must be 0 since A_3 has a 1 in the upper left hand corner and no other A_i has that for $i \neq 1$. $c_4 = 0$ since A_4 has a 1 in the dead center. It is obvious that A_5 and A_6 are linearly independent from each other, hence $c_5 = c_6 = 0$. So $c = \vec{0}$ and the matrices are linearly independent. 8. a. y = c, a constant. b. y = 3x. c. y = 3x + c.

9. Integer matrices: rank zero 0%,