
Solution Set 6, 18.06 Fall '11

1. Do problem 4 from 4.4.

Solution. (a) The matrix Q =

[
1
0

]
has orthonormal columns but

QQT =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
6=
[
1 0
0 1

]
= I.

(b) The vectors
[
0
]
,
[
0
]
in R are orthogonal but are not linearly independent.

(c) I claim that 1/
√
3

1/
√
3

1/
√
3

 ,
 1/

√
2

−1/
√
2

0

 ,
 1/

√
6

1/
√
6

−2/
√
6


is such. These three vectors are clearly orthonormal. Therefore they are linearly
independent (every set of pairwise orthogonal nonzero vectors is linearly inde-
pendent - check this!). But any three linearly independent vectors in R3 form a
basis and this veri�es my claim.

2. Do problem 19 from 4.4.

Solution. If A = QR then ATA = RTR = lower triangular times upper triangular.
Let c1, c2 denote the columns of A. Gram-Schmidt gives

q′1 = c1 =

−12
2

 , q′2 = c2 −
〈q′1, c2〉
〈q′1, q′1〉

q′1 =

11
4

− 9

9

−12
2

 =

 2
−1
2

 .
Scaling to get unit lengths gives

q1 =
q′1
‖q′1‖

=

−1/32/3
2/3

 , q2 =
q′2
‖q′2‖

=

 2/3
−1/3
2/3

 .
Since

R =

[
〈c1, q1〉 〈c2, q1〉

0 〈c2, q2〉

]
=

[
3 3
0 3

]
the desired A = QR decomposition reads−1 1

2 1
2 4

 =

−1/3 2/3
2/3 −1/3
2/3 2/3

[3 3
0 3

]
.

3. Do problem 37 from 4.4. Hint: Find a vector in c(A) that is orthogonal to c(Q), then
normalize.
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Solution. The projection of a onto the column space of Q is Pa = QQTa. So if you

subtract QQTa and divide by ‖a−QQTa‖ you will get the new orthogonal vector

q = a−QQT a
‖a−QQT a‖ . This is of unit lenght and to check that q is orthogonal to the column

space of Q we simply show that the projection of q onto C(Q) is zero:

Pq =
P (a−QQTa)

‖a−QQTa‖
=
QQT (a−QQTa)

‖a−QQTa‖
=

(QQTa−Q(QTQ)QTa)

‖a−QQTa‖
= 0.

4. Do problem 2 from 8.5.

Solution. To show that the corresponding functions are orthogonal we simply need
to show that appropriate integrals vanish:∫ 1

−1
1 · x dx =

x2

2

∣∣∣∣1
x=−1

= 0,∫ 1

−1
1 ·
(
x2 − 1

3

)
dx =

(
x3

3
− x

3

)∣∣∣∣1
x=−1

= 0,∫ 1

−1
x ·
(
x2 − 1

3

)
dx =

(
x4

4
− x2

6

)∣∣∣∣1
x=−1

=
1

4
− 1

6
−
(
1

4
− 1

6

)
= 0.

Writing f(x) = 2x2 as a combination of those functions simply amounts to

f(x) = 2x2 = 2

(
x2 − 1

3

)
+

2

3
· 1.

5. Do problem 4 from 8.5.

Solution. Note that x3 − cx is perpendicular to 1 regardless of c:∫ 1

−1
1 · (x3 − cx) dx =

x4

4
− cx2

2

∣∣∣∣1
x=−1

= 0.

For x3 − cx to be perpendicular to x we must have∫ 1

−1
x · (x3 − cx) dx =

(
x5

5
− cx3

3

)∣∣∣∣1
x=−1

=
1

5
− c

3
−
(
−1
5
− −c

3

)
= 0,

i.e., c = 3
5 . It remains to show that with this c the function x3−cx is also perpendicular

to x2 − 1
3 : ∫ 1

−1

(
x2 − 1

3

)(
x3 − 3x

5

)
dx =

∫ 1

−1

(
x5 − 14

15
x3 +

x

5

)
dx

=

(
x6

6
− 14

15

x4

4
+
x2

10

)∣∣∣∣1
x=−1

= 0,

where to obtain the last equality we have observed that the function in parentheses
is even.

2



6. Do problem 12 from 8.5.

Solution. The 5 by 5 �di�erentiation matrix� is
0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 2
0 0 0 −2 0


which succintly expresses the information about expressing the derivatives of the �ve
functions in terms of those same functions:

1′ = 0,

(cosx)′ = − sinx,

(sinx)′ = cosx,

(cos 2x)′ = −2 sin 2x,
(sin 2x)′ = 2 cos 2x.

7. (This problem is worth 20 points) In MATLAB or your favorite language, create 2n-
length discrete versions of q1 = 1/

√
n cos(x) and q2 = 1/

√
n cos(3x) by taking equal

sized samples from 0to2π, taking care to include 0 but exclude 2π. This means we
want to think of each of these as column vectors [x0, . . . , x2n−1]

T where xi = iπ/n.
In MATLAB this is x=(0:(2*n-1))'*pi/n. (before you go on, test to yourself that
they're unit vectors). Let Q = [q1 q2].

(a) Derive an identity for cos(3x) in terms of cos(x) (hint: you can use sum to
product formulae). Use this identity to prove that cos(x)3 is in the span of
cos(x) and cos(3x).

Solution. Sure we can use sum to product formulae to express cos 3x = cos(2x+
x) in terms of trigonometric functions of arguments x and 2x and then use double
angle formulas to get rid of all cos 2x and sin 2x. But we can also use complex
numbers to derive the identity in a much slicker way! Observe the Euler identity

eix = cosx+ i sinx

and then cube it. You will get

cos 3x+ i sin 3x = e3ix = (cosx+ i sinx)3

= (cosx)3 − 3 cosx(sinx)2 + i(3(cosx)2 sinx− (sinx)3),

and consequently

cos 3x = (cosx)3−3 cosx(sinx)2 = (cosx)3−3 cosx(1−(cosx)2) = 4(cosx)3−3 cosx.

It is immediately clear that (cosx)3 lies in the span of cos 3x and cosx because

(cosx)3 =
1

4
cos 3x+

3

4
cosx.
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(b) Project b = cos(x)3 into the column space of Q as to obtain the best least
squares �t (for a shortcut, see blue line under eq. 4 on page 233). This should
give some expansion. Does b equal its projection? What does this have to do
with the previous part of the problem (there should really only be one reasonable
interpretation of this question)?

Solution. [See MATLAB code]

(c) Now project b = cos(x)5 onto the column space of Q. Does b equal its projection?
If the answer is di�erent from the previous part, why not?

Solution. [See MATLAB code]

8. Do problem 14 from 5.1.

Solution. As required, we do row operations:

det


1 2 3 0
2 6 6 1
−1 0 0 3
0 2 0 7

 = det


1 2 3 0
0 2 0 1
0 2 3 3
0 2 0 7

 = det


1 2 3 0
0 2 0 1
0 0 3 2
0 0 0 6

 = 1 · 2 · 3 · 6 = 36.

Similarly,

det


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 = det


2 −1 0 0
0 3

2 −1 0
0 −1 2 −1
0 0 −1 2

 = det


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 −1 2



= det


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 = 2 · 3
2
· 4
3
· 5
4
= 5.

9. Do problem 29 from 5.1.

Solution. Even though projection matrices P = A(ATA)−1AT are square, A appear-
ing in the formula need not be. Therefore, it does not make sense to talk of detA
and the �proof� breaks down.

MATLAB code

%%%%%%%%%%%%%%%%%%%

%Problem 7 (b),(c)%

%%%%%%%%%%%%%%%%%%%

n=10;
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x=(0:(2*n-1))'*pi/n;

q1=cos(x)/sqrt(n);

q2=cos(3*x)/sqrt(n);

norm(q1)

ans =

1

norm(q2)

ans =

1

Q=[q1 q2];

b = (cos(x).^3)/sqrt(n);

% this shows projecting the cos^3 vector get

% itself back, since the norm of the difference

% is basically 0. You can also just

% display the two separately and look by eye.

norm((Q*(Q'*Q)^(-1)*Q'*b)-b)

ans =

1.6059e-16

% now we do the cos^5 vector. Here the difference

% is very far from 0

c = (cos(x).^5)/sqrt(n);

norm((Q*(Q'*Q)^(-1)*Q'*c)-c)

ans =

0.0625

% an additional thing you can do to check the

% coefficients:

% cos(3x)=4*(cos(x))^3-3*cos(x),
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% hence cos(x)^3 = (1/4)cos(3x)+(3/4)cos(x)

% the following shows this:

Q'*b

ans =

0.7500

0.2500

diary off
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