
Solution Set 5, 18.06 Fall '11

1. Take two connected graphs A and B with a and b vertices respectively. Let their
union be C (i.e. a big graph with A and B as two disjoint parts).

(a) What is the rank of C's adjacency matrix?

Solution. If R and S are the adjacency matrices of A and B then the adjacency
matrix of C is the block matrix

C =
[
R 0
0 S

]
.

We see immediately that the rank of C is the sum of the ranks of A and B: this
is easy to see, for instance, if you think about how elimination would proceed
for C and what the pivot columns would be. The rank of R is a− 1 because it
is an adjacency matrix of a connected graph with a vertices; similarly, the rank
of S is b− 1. Therefore, the rank of C is a+ b− 2. You might wonder: shouldn't
the rank of C be a + b − 1 because it's an adjanceny matrix of a graph? No,
because it's an adjacency matrix for a graph which is not connected!

(b) What is its nullspace?

Solution. The dimension of the nullspace is (a + b)− (a + b− 2) = 2. Since

1
...
1
0
...
0


,



0
...
0
1
...
1


(the �rst vector has a ones and b zeroes, the second one has a zeroes and b
ones) are both in the nullspace of C and are also linearly independent (because
a, b > 0; the empty graph is not connected!), they form a basis of the nullspace.
I.e., the nullspace consists of all vectors whose �rst a coordinates are equal and
whose last b coordinates are equal.

2. Free points!!!

Solution. Yay!

3. Do problem 21 from 4.1.
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Solution. Such vectors are, for instance,
0
1
−1
0

 ,


5
0
−1
−1

 .

They are easily seen to be in S⊥, independent, and as the dimension of S⊥ is 4−2 = 2
they must also form a basis for S⊥, so in particular span. Finding S⊥ is the same as

solving Ax = 0 for A =
[
1 2 2 3
1 3 3 2

]
because the two equations in Ax = 0 are saying

precisely that x is orthogonal to S.

4. Do problem 28 from 4.1.

Solution. (a) Perpendicularity of (1, 1, 1) and (1, 1,−2) only shows that the two
planes contain lines that are orthogonal to each other. A plane is two-dimensional,
so to check orthogonality we would have to extend those two vectors to bases
and then check that each vector in the basis for the �rst plane is perpendicular
to each vector in the basis for the second plane.

(b) The subspace spanned by (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1) is two-dimensional. So is
the subspace spanned by (1,−1, 0, 0, 0) and (2,−2, 3, 4,−4). In a 5-dimensional
space, however, the dimensions of any pair of orthogonal complements must sum
up to 5.

(c) Two distinct lines in a plane meet only in the zero vector but they are not
necessarily orthogonal.

5. Do problem 11(a) from 4.2. Check the �it should...� part!

Solution. First we compute AT A and AT b:

AT A =
[
1 0 0
1 1 0

]1 1
0 1
0 0

 =
[
1 1
1 2

]
, AT b =

[
1 0 0
1 1 0

]2
3
4

 =
[
2
5

]
.

Now we have to solve [
1 1
1 2

]
x̂ =

[
2
5

]
.

As

[
1 1
1 2

]
is invertible there is a unique solution, namely, x̂ =

[
−1
3

]
(easy guesswork,

but we could've as well found A−1 and computed x̂ = A−1b). Finally we compute the
projection p:

p = Ax̂ =

1 1
0 1
0 0

[−1
3

]
=

2
3
0

 .
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Let us check that e = b− p =

2
3
4

−
2

3
0

 =

0
0
4

 is perpendicular to the columns of

A. But this is evident because the columns of A have last coordinates zero.

6. Do problem 17 from 4.2. Brie�y explain your answer.

Solution. Indeed, this follows from the laws for operations with matrices:

(I − P )2 = (I − P )(I − P ) = I − P − P + P 2 = I − P,

because P 2 = P . Therefore, both P and I − P are projection matrices.

When P projects onto the column space of A, I − P projects onto the orthogonal
complement of the column space of A, namely, onto the left nullspace of A. Indeed,
the images of I −P and P are perpendicular, because (I −P )P = P (I −P ) = 0 and
they span because any x can be decomposed as x = (I − P )x + Px. Therefore, they
are orthogonal complements.

7. Do problem 22 from 4.2.

Solution. To show that a matrix P is symmetric we only need to show that P T = P .
For our P this is an easy calculation:

P T = (A(AT A)−1AT )T = (AT )T ((AT A)T )−1AT = A(AT A)−1AT = P.

8. On a computer:

(a) project a vector b onto the column space of a matrix A with independent columns
(in MATLAB, try A=randn(3,2). When making the projection matrix, keep in
mind that A' is the transpose and \inv(A) is the inverse). Project the result
onto the same A. Explain the results.

Solution. [See MATLAB code]

(b) Construct an A where the columns are not independent. Now try to make a
projection matrix. What happens? Explain why MATLAB would do this.

Solution. [See MATLAB code]

(c) Let the projection matrix you get in the �rst part be P . Add P +P 2+ · · ·+P 100.
(in MATLAB this would be the following code: Z=0; for i=1:100, Z=Z+P\^i; end.
Compare the answer to P . Explain what you see.

Solution. [See MATLAB code]

9. Do problem 6 from 4.3.
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Solution. First we compute the inner products aT b and aT a:

aT b = 1 · 0 + 1 · 8 + 1 · 8 + 1 · 20 = 36,

aT a = 1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4.

Then
x̂ = aT b/aT a = 36/4 = 9.

The projection p equals

p = x̂a = 9


1
1
1
1

 =


9
9
9
9

 .

To check that

e = b− p =


0
8
8
20

−


9
9
9
9

 =


−9
−1
−1
11


is perpendicular to a we compute the dot product

eT a = −9 · 1 + (−1) · 1 + (−1) · 1 + 11 · 1 = 0.

The shortest distance ‖e‖ from b to the line through a is

‖e‖ =
√

(−9)2 + (−1)2 + (−1)2 + 112 =
√

204 = 2
√

51.

10. Do problem 12 from 4.3.

Solution. (a) The inner product aT a is aT a = 1 + · · · + 1 = m. The inner product
aT b is aT b = b1 + · · ·+ bm. Therefore, the solution x̂ to aT ax̂ = aT b is

x̂ =
b1 + · · ·+ bm

m
,

the mean of the bi's.

(b) We calculate

e = b− ax̂ =

 b1 − b1+···+bm
m

...

bm − b1+···+bm
m

 .

The variance is

‖e‖2 =
(

b1 −
b1 + · · ·+ bm

m

)2

+ · · ·+
(

bm −
b1 + · · ·+ bm

m

)2

= b2
1 + · · ·+ b2

m −
2
m

(b1 + · · ·+ bm)(b1 + · · ·+ bm) +
(b1 + · · ·+ bm)2

m

= b2
1 + · · ·+ b2

m −
1
m

(b1 + · · ·+ bm)2.
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The standard deviation is

‖e‖ =

√
b2
1 + · · ·+ b2

m −
1
m

(b1 + · · ·+ bm)2.

(c) First we �nd e = b−b̂ =

1
2
6

−
3

3
3

 =

−2
−1
3

. It is evident that e is perpendicular

to p because the dot product vanishes: (−2)·3+(−1)·3+3·3 = 0. The projection
matrix P is given by the formula

P =
aaT

aT a
=

1
3

1 1 1
1 1 1
1 1 1

 .

Indeed, one readily veri�es that P 2 = P and also

Pb =
1
3

1 1 1
1 1 1
1 1 1

1
2
6

 =

3
3
3

 = p.

MATLAB code

%%%%%%%%%%%%%

% Problem 8 %

%%%%%%%%%%%%%

A=randn(3,2);b=[1 1 1]';

P=A*inv(A'*A)*A';

P*b

ans =

-0.144525932578878

0.151266288307688

0.038512058052834

P*P*b

ans =

-0.144525932578878
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0.151266288307689

0.038512058052834

% P^2=P for a projection, so P*P*b = P*b.

%(b)

A=randn(3,1)*randn(1,2); %% What is the rank of this matrix?

inv(A'*A)

{Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.596964e-017.}

ans =

1.0e+014 *

-0.668731211789606 -1.371973404495029

-1.371973404495029 -2.814749767106560

A*inv(A'*A)*A'

{Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.596964e-017.}

ans =

-0.000471959154735 0.000372942179054 0.003895037519367

-0.008909336176797 0.007040158484826 0.073527970234564

0.003775673237879 -0.002983537432432 -0.031160300154939

% It seems we have an error. The reason is that

% we don't have full rank.

%(c)

Z=0; for i=1:100, Z=Z+P^i; end
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P

P =

0.556666154342449 -0.328758282912762 -0.372433804008565

-0.328758282912762 0.756206277408302 -0.276181706187851

-0.372433804008565 -0.276181706187851 0.687127568249249

Z

Z =

55.666615434245969 -32.875828291277372 -37.243380400856793

-32.875828291277287 75.620627740831850 -27.618170618785278

-37.243380400856836 -27.618170618785214 68.712756824925364

% Reason:

% Z is 100*P as P^i=P for all 100 instances.
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