
Solution Set 2, 18.06 Fall '11

1. Do Problem 7 from 2.6.

Solution. We perform the Gauÿ elimination w/o row exchange, and record below the
matrices Eij [recalling the textbook's notation: Eij adds a multiple of j'th row to
i'th row, while suppressing (in notation) what number we multiply by]:

A =

1 0 1
2 2 2
3 4 5

 E21∼

1 0 1
0 2 0
3 4 5

 E31∼

1 0 1
0 2 0
0 4 2

 E32∼

1 0 1
0 2 0
0 0 2

 =: U.

The matrices we used here, were:

E21 =

 1 0 0
−2 1 0
0 0 1

 , E31 =

 1 0 0
0 1 0
−3 0 1

 , and E32 =

1 0 0
0 1 0
0 −2 1

 ,

with inverses:

E−1
21 =

1 0 0
2 1 0
0 0 1

 , E−1
31 =

1 0 0
0 1 0
3 0 1

 , and E−1
32 =

1 0 0
0 1 0
0 2 1

 .

We now combine their e�orts. Recall that the result will also be lower triangular

and with only 1's on the diagonal, which reduces the number of entries you need to
compute (a little). Note also the order in which they come:

L = E−1
21 E

−1
31 E

−1
32 =

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
3 0 1

1 0 0
0 1 0
0 2 1

 =

1 0 0
2 1 0
3 2 1

 .

We �nally perform a test (as for any problem, to completely rule out error):

LU =

1 0 0
2 1 0
3 2 1

1 0 1
0 2 0
0 0 2

 =

1 0 1
2 2 2
3 4 5

 X

The procedure worked, since this was the A we started with.

2. Do Problem 15 from 2.6.

Solution. Since L is triangular we can solve Lc = b by back-substitution to get

c =

[
2
3

]
. Since U is triangular we can solve Ux = c by back-substitution to get

x =

[
−5
3

]
. Now multiply

A = LU =

[
1 0
4 1

] [
2 4
0 1

]
=

[
2 4
8 17

]
.

1



To solve Ax = b subtract 4 times the �rst row from the second to obtain an equivalent
system [

2 4
0 1

]
x =

[
2
3

]
which we solve by back-substitution to get x =

[
−5
3

]
.

3. Do these problems about permutations.

(a) Do Problem 8 from 2.7.

(b) For each permutation matrix of size 3, tell me what each one does to the column

vector v =

x1x2
x3

. For example, the identity matrix of size 3 sends v to itself,

and so corresponds to v =

x1x2
x3

.
(c) For 3 matrices of di�erent n > 1, take a permutation matrix of size n and

take their (n!)-th powers. What do you get? Think about why. The proof is
outside the scope of this course (in MATLAB, we can create a random permuta-
tion matrix with e=eye(n); a=e(randperm(n),:). To evaluate a factorial, use
factorial(n)).

Solution. (a) There are two equivalent ways to think about this. Note there is
exactly one 1 in the �rst row; we can choose that in n ways. Now there are
n− 1 spots in the second row for the unique 1 in that row; we can choose that
in (n− 1) ways. Repeating this argument, we have a total of n! = n(n− 1) · · ·
choices. Alternatively, a permutation is determined uniquely by where it sends
(x1, x2, . . . , xn) via left multiplication. The �rst component of the resulting
vector can be any of n choices xi, and the second component can be any of the
remaining (n− 1) choices, etc. This gives the same count.

(b) We use the same v =

x1x2
x3

 for all of these. We already talked about the identity;1 0 0
0 0 1
0 1 0

 sends v to

x1x3
x2

,
0 1 0
0 0 1
1 0 0

 sends v to

x2x3
x1

,
0 1 0
1 0 0
0 0 1

 sends v tox2x1
x3

,
0 0 1
1 0 0
0 1 0

 sends v to

x3x1
x2

, and
0 0 1
0 1 0
1 0 0

 sends v to

x3x2
x1

,
(c) [See MATLAB code] You'll always get the identity matrix.

4. Do Problem 19 from 2.7.

2



Solution. (a) (RTAR)T = RTAT (RT )T = RTAR, where we used that A = AT is
symmetric in the last equality. Its shape is n by n.

(b) If you multiply RTR using row-by-column method you see that the ith diagonal
entry of RTR is the inner product of the ith column of R with itself and is
therefore nonnegative (equal to the squared length of the ith column of R).

5. Do Problem 22 from 2.7.

Solution. First matrix. If we start with

A =

0 1 1
1 0 1
2 3 4

 ,

we can swap rows 1 & 2 by using P =

0 1 0
1 0 0
0 0 1

, to get PA =

1 0 1
0 1 1
2 3 4

.
Then the (non-row-exchanging) matrix E31,

E31 =

 1 0 0
0 1 0
−2 0 1

 , with E−1
31 =

1 0 0
0 1 0
2 0 1

 ,

followed (i.e. further to the left) by next the (non-row-exchanging) matrix E32,

E32 =

1 0 0
0 1 0
0 −3 1

 , with E−1
32 =

1 0 0
0 1 0
0 3 1

 ,

together serve to yield the result:

U = E32E31PA =

1 0 1
0 1 1
0 0 −1

 , and

L = E−1
31 E

−1
32 =

1 0 0
0 1 0
2 3 1

 .

We perform the test:

PA =

0 1 0
1 0 0
0 0 1

0 1 1
1 0 1
2 3 4

 =

1 0 1
0 1 1
2 3 4

 , while also

LU =

1 0 0
0 1 0
2 3 1

1 0 1
0 1 1
0 0 −1

 =

1 0 1
0 1 1
2 3 4

X

3



Second matrix. Now starting a Gauÿ reduction of the matrix

A =

1 2 0
2 4 1
1 1 1

 ,

we see that we can subtract a multiple of the 1st row from the 2nd row (and then a
multiple of the 1st row from the 3rd row) to reduce the matrix. But then we will end
with the pivots of rows 2 & 3 in the wrong order. So, we start by applying to A the
permutation matrix of rows 2 & 3:

P23 =

1 0 0
0 0 1
0 1 0

 , and thus P23A =

1 2 0
1 1 1
2 4 1

 .

Now, the mentioned (non-exchanging) row operations (Note: Row numbers and no-
tation as applied to the new object of interest, P23A) are:

E31 =

 1 0 0
0 1 0
−2 0 1

 , with E−1
31 =

1 0 0
0 1 0
2 0 1

 ,

followed by

E21 =

 1 0 0
−1 1 0
0 0 1

 , with E−1
21 =

1 0 0
1 1 0
0 0 1

 ,

Thus here we get

U = E21E31P23A =

1 2 0
0 −1 1
0 0 1

 , and

L = E−1
31 E

−1
21 =

1 0 0
1 1 0
2 0 1

 .

We perform the test:

P23A =

1 0 0
0 0 1
0 1 0

1 2 0
2 4 1
1 1 1

 =

1 2 0
1 1 1
2 4 1

 , while also

LU =

1 0 0
1 1 0
2 0 1

1 2 0
0 −1 1
0 0 1

 =

1 2 0
1 1 1
2 4 1

X

so we computed correctly.

4



6. Suppose a portfolio consists of a credit account, a checkings account, and a savings
account, with the premise that for all these accounts you can be in the negatives
(overdrawing, etc.) with no limit in either direction. Convince the grader that the
set of portfolios has the structure of a vector space. How many dimensions are there?
What do they mean? What does addition/subtraction of two vectors mean in this
space? What does multiplication of a vector by a real number mean in this space?

Solution. This is a 3-dimensional vector space of vectors (a, b, c), where (say) a, b, c
correspond to the credit balance, checkings, and savings balance, respectively, with
negative numbers corresponding to money you owe the bank. Two vectors can be
added to mean one has gained money (possibly negative) in the three accounts. Mul-
tiplication by a real number can correspond to scaling the amount of money, or even
changing the units of money (for example, if we want to convert from dollars to cents,
we can scale every number by 100).

7. Do Problem 14 from 3.1.

Solution. (a) The subspaces of R2 are the zero subspace Z, lines through 0 and R2

itself.

(b) The space of all diagonal 2 × 2 matrices D we consider are more suggestively
described as all D of the form

D =

[
x 0
0 y

]
, for x, y ∈ R freely chosen.

Hence by part (a), we see that all subspaces of D are: (A) The zero subspace
Z, (B) For any given line L through 0 in R2, the subspace corresponding to L
that consists of all the matrices whose (x, y) ∈ L, and �nally (C) The collection
of all diagonal 2× 2 matrices D.

8. Do Problem 27 from 3.1.

Solution. (a) False. The zero vector b = 0 belongs to any subspace and is always in
the column space C(A) as well.

(b) True. If A were nonzero, it would have a nonzero column and the column space
of A would have to contain that column.

(c) True. The subspaces spanned by v1, . . . , vn and by 2v1, . . . , 2vn are the same
because each vi =

1
2(2vi) is a linear combination of the 2vi's and vice versa.

(d) False. Take A = I. The column space of A is nonzero by part (b) whereas that
of A− I is zero.

5



9. (a) On a computer, time the following operations for randommatrices of size 100, 200,
and 800, averaged over say 50 trials: a) matrix multiplication, b) matrix addi-
tion, c) solving Ax = b. With MATLAB, your code for multiplication may look
like this after setting an n:

t=50

v=zeros(t,1)

for i=1:t

a=rand(n); b=rand(n);

tic, a*b; v(i)=toc;

end

mean(v)

(b) Now, compute the rate of computation (single-number additions and multipli-
cations per second) for each of these three operations on these various n. Re-
call that matrix multiplication, matrix addition, and equation solution require
roughly 2n3, n2, and (2/3)n3 single-number additions and multiplications, re-
spectively (technical fact: the rate may converge to di�erent numbers for reasons
beyond the scope of this class, like memory tra�c and cache misses).

Solution. [See MATLAB code]

10. Create random 2x2x2 3-dimensional arrays (not matrices, which are 2-dimensional
arrays!) of numbers (in MATLAB, a=rand(2,2,2);).

(a) Create two such 3-dimensional arrays. Add them. Multiply them by constants.
Get a feel for them. Question: do these arrays form a vector space?

(b) Suppose we choose a di�erent set of (m,n, p) besides (2, 2, 2). Are the rand(m,n,p)'s
a vector space? (avoid any of these being 1 since MATLAB does something
funny)

(c) Can I add a rand(2,3,5) and a rand(4,7,8)?

(d) True or false: the collection of ALL 3-dimensional arrays form a vector space.

Solution. (a) [See MATLAB code] These do form a vector space, precisely because
you can add and multiply by constants.

(b) These also form a vector space; the 2's are not special in any way.

(c) No. You should get an error if you tried. There is no nice way to de�ne addition
on these guys.

(d) False, because we'd need to be able to, say, add two things with di�erent
(m,n, p)'s like from the last problem.

6



MATLAB code

%%%%%%%%%%%%%

% Problem 3 %

%%%%%%%%%%%%%

>> n=5;

>> %% we create permutation matrices by permuting rows of the identity

>> e=eye(n);p=randperm(n);

>> a=e(p,:)

a =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

>> p=randperm(n);

>> a=e(p,:)

>> a^factorial(n)

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

%%%%%%%%%%%%%

% Problem 9 %

%%%%%%%%%%%%%

%% we omit the timing (a) because it was basically given in the

%% problem set.

t=50;

v=zeros(t,1);

for n=[100 200 800]

for i=1:t

a=rand(n); b=rand(n);

7



tic, a*b; v(i)=toc;

end

[n (2*n^3)/mean(v)/1e9]

%% On an old machine, the numbers suggest about 10 gigaflops

%% (the 1e9 converts to gigaflops by dividing by 10^9)

t=50;

v=zeros(t,1);

for n=[100 200 800]

for i=1:t

a=rand(n); b=rand(n);

tic, a+b; v(i)=toc;

end

[n (n^2)/mean(v)/1e6]

%% On an old machine, the numbers suggest about 100 or 200 megaflops

t=50;

v=zeros(t,1);

for n=[100 200 800]

for i=1:t

a=rand(n); b=rand(n,1);

tic, a\b; v(i)=toc;

end

[n (2/3*n^3)/mean(v)/1e9]

%% On an old machine, the numbers suggest about 1 or 2 gigaflops

end

%%%%%%%%%%%%%%

% Problem 10 %

%%%%%%%%%%%%%%

>> a=rand(2,2,2); b=rand(2,2,2);

>> a+b; 10*a;

%% The result is suppressed here via the ';', but it was allowed (no error)

>>

>> a=rand(2,3,4); b=rand(3,2,4);

>> a+b;

??? Array dimensions must match for binary array op.

%% This error message means that adding was not okay.

8


