	Grading
	1
Your PRINTED name is:	2
Tour Trenview name is.	3
	4

Please circle your recitation:

1	T 9	2-132	Kestutis Cesnavicius	2-089	2-1195	kestutis
2	T 10	2-132	Niels Moeller	2-588	3-4110	moller
3	T 10	2-146	Kestutis Cesnavicius	2-089	2-1195	kestutis
4	T 11	2-132	Niels Moeller	2-588	3-4110	moller
5	T 12	2-132	Yan Zhang	2-487	3-4083	yanzhang
6	T 1	2-132	Taedong Yun	2-342	3-7578	tedyun

1 (24 pts.)

Let
$$A = \begin{pmatrix} .5 & 0 & 0 \\ .5 & .9 & 0 \\ 0 & .1 & 1 \end{pmatrix}$$
.

1. (4 pts) True or False: The matrix A is Markov.

True. Markov matrices have columns that sum to 1 and have non-negative entries. The answer of false applies to what is known as "Positive Markov Matrices."

2. (6 pts) Find a vector $x \neq 0$ and a scalar λ such that $A^T x = \lambda x$.

The obvious choice is (1,1,1) with $\lambda=1$ as this is the column sum property. Also easy to see is (1,0,0) with $\lambda=0.5$.

3. (4 pts) True or False: The matrix A is diagonalizable. (Explain briefly.)

True. The three eigenvalues, on the diagonal, are distinct.

4. (4 pts) True or False: One singular value of A is $\sigma = 0$. (Explain briefly.)

False. The matrix is nonsingular, since it has no zero eigenvalues. Nonsingular square matrices have all n singular values positive.

5. (6 pts) Find the three diagonal entries of e^{At} as functions of t.

They are $e^t, e^{0.5t}, e^{0.9t}$.

2 (30 pts.)

1. (5 pts) An orthogonal matrix Q satisfies $Q^TQ = QQ^T = I$. What are the n singular values of Q?

They are all 1. The singular values are the positive square roots of the eigenvalues of $QQ^T = Q^TQ = I$.

2. (10 pts) Let $A = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$. Find an SVD, meaning $A = U\Sigma V^T$, where U

and V are orthogonal, and $\Sigma=\left(\begin{array}{ccc}\sigma_1&&&\\&\sigma_2&&\\&&\sigma_3\end{array}\right)$ is diagonal with $\sigma_1\geq\sigma_2\geq\sigma_3\geq$

0. (Be sure that the factorization is correct and satisfies all stated requirements.)

$$A = \begin{pmatrix} & & 1 \\ & -1 & \\ 1 & & \end{pmatrix} \begin{pmatrix} 3 & & \\ & 2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} & & 1 \\ & 1 & \\ 1 & & \end{pmatrix}.$$
 The singular values

are in decreasing order and are positive. One can compute AA^{T} and $A^{T}A$, but easier to rig the permutation matrices and correct the sign. 3. (15 pts) The 2×2 matrix $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$, where $\sigma_1 > \sigma_2 > 0$ and both u_1, u_2 and v_1, v_2 are orthonormal bases for R^2 .

The set of all vectors x with ||x|| = 1 describes a circle in the plane. What shape best describes the set of all vectors Ax with ||x|| = 1? Draw a general picture of that set labeling all the relevant quantities $\sigma_1, \sigma_2, u_1, u_2$ and v_1, v_2 . (Hint: Why are u_1, u_2 relevant and v_1, v_2 not relevant?)

The svd rotates (or reflects) the circle with V^T , scales to an ellipse with axes in the coordinate directions through Σ , and then a rotated ellipse with axes in the direction u_1 and u_2 after U is applied. The Σ scales the x and y axes by σ_1 and σ_2 respectively, and σ_1 is the longer of the two.

3 (16 pts.)

1. (6 pts) Let $x \neq 0$ be a vector in \mathbb{R}^3 . How many eigenvalues of $A = xx^T$ are positive? zero? negative? (Explain your answer.) (Hint: What is the rank?)

A is symmetric pos semidefinite and rank 1, so there are 1 positive, 2 zero, and no negative eigenvalues.

2. (6 pts) a) What are the possible eigenvalues of a projection matrix?

0 and 1 (Since $P^2 = P$, $\lambda^2 = \lambda$.)

b) True or False: every projection matrix is diagonalizable.

True, every projection matrix is symmetric, hence diagonalizable.

3. (4 pts) True or False: If every eigenvalue of A is 0, then A is similar to the zero matrix.

False. A Jordan block with zero eigenvalues is not similar to the zero matrix for n > 1.

4 (30 pts.)

Consider the matrix $A=\left(\begin{array}{ccc} x & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\\ \end{array}\right)$ with parameter x in the (1,1) position.

1. (10 pts) Specify all numbers x, if any, for which A is positive definite. (Explain briefly.)

No x, the matrix is clearly singular with two equal rows and two equal columns.

2. (10 pts) Specify all numbers x, if any, for which e^A is positive definite. (Explain briefly.)

The eigenvalues of e^A are the exponentials of the eigenvalues of the matrix A. Since A is symmetric the eigenvalues are real, and thus exponentials are positive. A symmetric matrix with positive eigenvalues is positive definite.

3. (10 pts) Find an x, if any, for which 4I - A is positive definite. (Explain briefly.)

One can take any x < 3. The easiest choice is x = 1. With this guess the matrix has two eigenvalues 0 and one eigenvalue 3 both less than 4, so $4 - \lambda > 0$ for all three eigenvalues. Systematically, one can consider the three upper left determinants of 4I - A which are 4 - x, 11 - 3x, and 24 - 8x. They are all positive if and only if x < 3.