18.06 Problem Set 10 Solutions

1. Do problem 5 from section 6.5.

[Solution | f = (z + 3y)(z +y) = (¢ + 2y + y)(z + 2y — y) = (x + 2y)® — y>. There are many

points where this is negative, say (—1,2), where the above is 02 — 22 = —4.

This goes to show that not everything is positive-definite, even if all the entries are positive.

2. Do problem 26 from section 6.5.
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9 0 0 1 00
Let’'sdoanLUof A= | 0 1 2 |.WeshouldimmediatelygetA=| 0 1 0
0 2 8 0 2 1

9 0 0
By symmetry, we don’t have to do much more. Weknow D = | 0O 1 0 | from the pivots, so to
0 0 4
3 00 3 00 3 00
get CT we should multiply Lby [ 0 1 0 |toget|{ 0 1 0 |,andC=1| 0 1 2
0 0 2 0 2 2 0 0 2
1 00 11 1
The second matrix is similar. LU gives A = 1 10 0 1 1 |. Weknow the square
111 0 0 5
1 0 0 11 1
roots of D are 1,1,\/5, so CT = 1 1 0 and C = 01 1
1 1 5 0 0 V5

The point of this is just that the cholesky decomposition really is just LU for a symmetric matrix -
don’t need to think of them as separate things.

3. Do problem 6 from section 6.7.
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have the same eigenvalues I'm going to save work by using the eigenvalues of AA”, which are 3 and
1 (so we know AT A has eigenvalues 3, 1,0).
In the order of 3, 1, 0, the normalized eigenvectors of AT A are (1/1/6,2v/6,1V6), (1/v/2,0,—-1/v/2), (1/v/6, —11/6,1/6)
and the normalized eigenvectors of AAT are (1/v/2,1/v/2), (1/v/2,—1/+/2). Multiplying, we get

T _
and AA _(1 9

21 ) Because we know that they “basically”

(V2 V2 /3o o[ Ve 2/V6 _1/\/6
A—<1/\/§ —1/@)( 0 1 0> 1;% _;/Jﬁ 11//\/%5 ,

which we can check to be correct.

Okay, I just realized you guys already did this in the last pset. Ugh.

4. Do problem 11 from section 6.7.



Orthogonality tells us that AT A is going to be diagonal with entries p?, ..., p2. Thus, the columns
of V' (or the rows of V1) are just going to be the eigenvectors e; = (0,...,1,...,0),s0 V = V7T is
going to be the n by n identity matrix.

Y is going to have the lengths on the diagonal, because those are exactly the positive square roots of
the eigenvalues.

Finally, u; = Av;/p;, which in our case is exactly the normalized column w;/|w;|. So U is just

going to have columns of A, but normalized.

. Do problem 13 from section 6.7.

Let’s go through the process for the SVD of R. note that RTR = RTQTQR = AT A, so
the eigenvalues (and thus X.) and eigenvectors (and thus V') remain the same in the two calculations -
the only thing that changes is U.

An alternate way to see this is to note that if we multiply U on the left by a n orthonormal @, the
result QU is still orthonormal because (QU)TQU = UTQTQU = I. Thus, since R = USVT,
A=QR=(QU)SVT is a valid SVD for A.

. Do problem 2 from section 8.1.

1 0 0 1 00
Here we have A; = -1 1 0 ]. Afl = 1 1 0 |, so the inverse is just
0 -1 1 1 1 1
1/01 1/61 1/01
ATtert A = /e 1er+1/co 1/e1+1/co

1/01 1/Cl+1/62 1/Cl+1/02+1/03

. Do problem 5 from section 8.1.

The solution of this is y = — [ f(z) + C, with C determined by y(1) = 0. For f(z) =1
wegety = —x + 1.

. Do problem 6 from section 7.1.

Let’s call the conditions “additivity” and “scaling” respectively.

[a]: This is scaling the vector into a normal vector. Thus it is impossible that we get additivity, because
the sums of normal vectors don’t have to be normal. Take 7'(0, 1) and T'(1, 0) for instance. Howver,
true to its name this does have the scaling property, as whatever ¢ we introduce will be canceled from
v and ||v]].

[b]: This satisfies both. One immediate way to see this is to see that this is exactly matrix multiplication
by [1, 1, 1], which is a linear operation and thus satisfies both properties.

1 00
[c]: This also satisfies both. Again, this is jsut because this is matrix multiplicationby [ 0 2 0
0 0 3

[d]: This doesn’t satisfy additivity ((0,1) and (1,0) still work). Furthermore, scaling doesn’t work
either (if we scale by —1 we now pick out the negative of the smallest component, which doesn’t have
to be related in any way to the largest component.



9. Do problem 27 from section 7.2.

The question statement is kinda confusing. I'm parsing it as: “Suppose some linear transformation 7’
sends a basis of v; to a basis of w; via T'(v;) = w;. Why must 7" be invertible?”

T is invertible because we can give an explicit inverse from its image: take the w; = T'(v;) and
construct the map 7" that sends w; to v;. This is a well-defined map because there is only one way to
define what T" does on any vector w (since w; form a basis there is only one way to decompose w into
w;, which is the heart of the problem). This is easily checked to be linear.



