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1 (16 pts.)

a. (8 pts) Give bases for each of the four fundamental subspaces of A =


1 0 π e

0 1 1 0

0 0 0 0


Clearly the �rst two columns are independant and generate the column space.

The left null space is the orthogonal of the column space. A basis is given by the vector :


0

0

1


A possible basis for the nullspace is : 

π

1

−1

0

 ,

e

0

0

−1


The row space has dimension 2. The two �rst rows clearly generate it, therefore they form

a basis.
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b. (8 pts) Give bases for each of the four fundamental subspaces of

A =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




1

2

3

0




1 0 0 0

0 1 0 0

0 0 −1 1

0 0 1 1


(Each of the three matrices in the above product has orthogonal columns.)

The matrices on both side are non singular. Therefore the rank of the product is 3.

To compute the column space, we can restrict to the product of the �rst two matrices. The

third is invertible and will not change the column space. Clearly the column space of the

product of the �rst two matrices is spanned by the �rst three columns of the leftmost matrix.

Since these vectors are independant they form a basis.

To compute the row space we can restrict to the last two matrices of the product for the

same reason as above. We �nd that the row space has as basis the �rst three rows of the

rightmost matrix.

Since the nullspace is the orthogonal of the row space, and we know that the rows of the

rightmost matrix are orthogonal, the last row of the right most matrix is a basis for the

nullspace.

Similarly, the last column of the leftmost matrix is a basis for the left nullspace.

Remark. Another way to see it is to notice that this is almost the SVD of A (we just need

to normalize the columns of the leftmost and rightmost matrix). Our answer is exactly the

usual way to �nd a basis of the four fundamental subspaces when we have found the SVD.
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2 (14 pts.)

Let P1 be the projection matrix onto the line through (1, 1, 0) and P2 is the projection onto

the line through (0, 1, 1).

(a) (4 pts) What are the eigenvalues of P1?

The eigenvalue of a projection matrix are 1 and 0. The question remain of the multi-

plicity of each eigenvalue. The multiplicity of 0 is the dimension of the nullspace which

is 3− the rank. Here P1 is a projection on a line, therefore the columnspace is made

of vector on that line and has dimension 1. Therefore 0 has multiplicity 2 and 1 has

multiplicity 1.

(a2)(bonus) (This question is from an earlier version of the exam.)

Find an eigenvalue and an eigenvector of P1 + P2.

The problem asks only for one eigenvalue and one eigenvector, but since you're taking

this exam for practice, you may as well �nd all three.

For simplicity of notation, let ~a1 := (1, 1, 0) and ~a2 := (0, 1, 1). Note that the vectors

~a1 and ~a2 have the same length,
√
2. Since ~a1 · ~a2 = 1 = 2 cos(60◦), we know that the

angle between ~a1 and ~a2 is 60
◦. It is possible to see the following facts geometrically:

• First, ~v1 := ~a1 × ~a2 = (1,−1, 1) is an eigenvector of P1 + P2, with eigenvalue

λ1 := 0. Indeed, since v1 is perpendicular to both (1, 1, 0) and (0, 1, 1), we know

that v1 lies in the nullspace of both P1 and P2, and hence in the nullspace of

P1 + P2 as well.

• Second, ~v2 := ~a1 + ~a2 = (1, 2, 1) is an eigenvector of P1 + P2, with eigenvalue

λ2 := 2 cos2(60◦/2) = 1 + cos(60◦) = 3/2.

• Third, ~v3 := ~a1 − ~a2 = (1, 0,−1) is an eigenvector of P1 + P2, with eigenvalue

λ3 := 2 sin2(60◦/2) = 1− cos(60◦) = 1/2.
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The second and third facts can be derived with a bit of trigonometry, but if you don't

want to get into that, you can just do the usual linear-algebra calculation. Note that

P1 =
1

12 + 12 + 02


1

1

0

[
1 1 0

]
=

1

2


1 1 0

1 1 0

0 0 0

 ,
and similarly

P2 =
1

2


0 0 0

0 1 1

0 1 1

 ,
so that

P1 + P2 =
1

2


1 1 0

1 2 1

0 1 1

 .
You may solve for the roots λ1, λ2, λ3 of det(P1 +P2− λI) = 0 and �nd the nullspaces

of P1 + P2 − λiI (for i = 1, 2, 3) as usual, and get the results that we described above.

(b) (10 pts) Compute P = P2P1. (Careful, the answer is not 0)

Let's just do it directly:

P =
1

4


0 0 0

0 1 1

0 1 1




1 1 0

1 1 0

0 0 0

 =
1

4


0 0 0

1 1 0

1 1 0

 .
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3 (10 pts.)

The nullspace of the matrix A is exactly the multiples of (1, 1, 1, 1, 1).

(a) (2 pts.) How many columns are in A?

Five columns. Otherwise it doesn't make sense to multiply A with the given vector.

(b) (3 pts.) What is the rank of A?

We know that the sum of the rank of A and the dimension of the nullspace is the

number of columns. Since the nullspace has dimension 1, the rank must be 4.

(c) (5 pts.) Construct a 5× 5 matrix A with exactly this nullspace.

We need to construct a matrix whose sum of columns is 0 and with rank 4.

The following works :



1 0 0 0 −1

0 1 0 0 −1

0 0 1 0 −1

0 0 0 1 −1

0 0 0 0 0


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4 (15 pts.)

Find the solution to

du

dt
= −

 1 2

1 2

u
starting with u(0) =

 3

0

.
(Note the minus sign.)

The general formula for the solution to this di�erential equation is entirely analogous to the

formula you learned in 18.01:

~u(t) = e

−t

 1 2

1 2


~u(0).

Of course, you should actually rewrite this in simplest form.

To facilitate taking the matrix exponential, let's diagonalize 1 2

1 2

 .
The eigenvalues are easily computed to be 0 (because the matrix is obviously singular) and

3 (because the trace is 3), and the corresponding eigenvectors are (2,−1) and (1, 1), so 1 2

1 2

 =

 2 1

−1 1

 0 0

0 3

 2 1

−1 1

−1

.

It follows that

e

−t

 1 2

1 2


=

 2 1

−1 1

 e−t

 0 0

0 3

  2 1

−1 1

−1

=

 2 1

−1 1

 e−0t 0

0 e−3t

 2 1

−1 1

−1

.

Now  2 1

−1 1

−1

=
1

3

 1 −1

1 2

 ,
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so

~u(t) =
1

3

 2 1

−1 1

 e−0t 0

0 e−3t

 1 −1

1 2

 ~u(0)
=

1

3

 2 1

−1 1

 1 0

0 e−3t

 1 −1

1 2

 3

0


=

 2 1

−1 1

 1 0

0 e−3t

 1 −1

1 2

 1

0


=

 2 1

−1 1

 1 0

0 e−3t

 1

1


=

 2 1

−1 1

 1

e−3t


=

 e−3t + 2

e−3t − 1

 .
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5 (10 pts.)

The 3× 3 matrix A satis�es det(tI − A) = (t− 2)3.

(a) (2pts) What is the determinant of A?

If we take t = 0, we �nd det(−A) = −8. Since A is 3 × 3, det(−A) = − det(A).

Therefore det(A) = 8.

(b) (8pts) Describe all possible Jordan normal forms for A.

The eigenvalues of A are 2 with multiplicity 3. The possible Jordan form of A are :


2 1 or 0 0

0 2 1 or 0

0 0 2


There are 4 possibilities.
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6 (7 pts.)

The matrix A =

 1 0

C 1


(a) (2 pts) What are the eigenvalues of A?

This is a triangular matrix, therefore the eigenvalues are the diagonal entries 1 and 1.

(b) (5 pts) Suppose σ1 and σ2 are the two singular values of A. What is σ2
1 + σ2

2?

σ2
1 and σ2

2 are the eigenvalues of ATA. The question is asking for the trace of ATA.

ATA =

1 + C2 ?

? 1


(The question marks are entries that we don't care about)

The trace is 2 + C2.
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7 (8 pts.)

For each transformation below, say whether it is linear or nonlinear, and brie�y explain why.

(a) (2 pts) T (v) = v/‖v‖

Not linear. For a positive real number c, T (cv) = T (v) and if T was linear we would

have T (cv) = cT (v).

(b) (2 pts) T (v) = v1 + v2 + v3

Linear. We have T (0) = 0, T (v + w) = T (v) + T (w) and T (cv) = cT (v).

(c) (2 pts) T (v) = smallest component of v

Not linear. Let's say that v is 2-dimensional. Take v =

1
0

, then T (−v) = −1 6=

−T (v) = 0.

(d) (2 pts) T (v) = 0

Linear. Clearly satis�es all the requirement.
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8 (10 pts.)

V is the vector space of (at most) quadratic polynomials with basis v1 = 1,v2 = (x− 1),v3 =

(x− 1)2. W is the same vector space, but we will use the basis w1, w2, w3 = 1,x,x2.

(a) (5 pts) Suppose T (p(x)) = p(x + 1). What is the 3 × 3 matrix for T from V to W in the

indicated bases?

We have to compute T (v1), T (v2), T (v3) and write them in the basis w1, w2, w3. We

have T (v1) = 1 = w1, T (v2) = (x + 1 − 1) = x = w2 and T (v3) = (x − 1 + 1)2 = w3.

Therefore the matrix of T in these basis is the identity matrix :
1 0 0

0 1 0

0 0 1


Note that since the two basis are di�erent, this does not imply that T is the identity.

(b) (5 pts) Suppose T (p(x)) = p(x). What is the 3× 3 matrix for T from V to W in the indicated

bases?

We do the same thing, T (v1) = w1, T (v2) = x − 1 = w2 − w1, T (v3) = x2 − 2x + 1 =

w3 − 2w2 + w1. Therefore the matrix of T is :
1 −1 1

0 1 −2

0 0 1


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9 (10 pts.)

In all of the following we are looking for a real 2×2 matrix or a simple and clear reason that

one can not exist.

Please remember we are asking for a real 2× 2 matrix.

(a) (2 pts) A with determinant −1 and singular values 1 and 1.

Take A =

1 0

0 −1

. Clearly |A| = −1 and ATA = I therefore, the singular values are

1 and 1.

(b) (2 pts) A with eigenvalues 1 and 1 and singular values 1 and 0.

This is impossible. If the eigenvalues are 1 and 1, the matrix is non-singular, therefore

it has two non-zero singular values (in general the number of non-zero singular values

is the rank of the matrix).

(c) (2 pts) A with eigenvalues 0 and 0 and singular values 0 and 1

Take A =

0 1

0 0

.
(d) (2 pts) A with rank r = 1 and determinant 1

Impossible. If the rank is 1, the matrix is singular and has determinant 0.

(e) (2 pts) A with complex eigenvalues and determinant 1

The determinant is the product of the eigenvalues, hence we need to �nd complex

numbers whose product is 1. One possibility is i and −i. We need to �nd a real matrix

with i and −i as eigenvalues. The following matrix works :

A =

0 −1
1 0


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Bonus problem (From an earlier version of the exam)

A basis for the nullspace of the matrix A consists of the three vectors :



1

−2

1

0

0


,



3

−2

0

1

0


,



6

5

0

0

1


A basis for the column space of the matrix A consists of the two vectors :


1

−1

−1

 ,


2

−1

0


(a) (2 pts.) How many rows and how many columns are in A?

If A is an m×n matrix, then the nullspace N(A) is a subspace of Rn, while the column

space C(A) is a subspace of Rm. In our case, this tells us n = 5 and m = 3. So A is a

3× 5 matrix; A has 3 rows and 5 columns.

(b) (6 pts.) Provide a basis for N(AT ) and C(AT ).

The left-nullspace of A, i.e., N(AT ), is the orthogonal complement of C(A) in R3. Let's

take the cross product of the two vectors in the basis for C(A):

(1,−1, 1)× (2,−1, 0) = (1, 2, 1).

The vector (1, 2, 1) is perpendicular to the plane C(A), so it's a basis for the line that

is orthogonal to this plane, i.e., the line N(AT ). But suppose you didn't think of using

the cross product; what could you have done instead? Well, N(AT ) is the space of

solutions (x1, x2, x3) to the equation 1 −1 1

2 −1 0



x1

x2

x3

 =

 0

0

 .
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Let's put the 2× 3 matrix in reduced row-echelon form: 1 −1 1

2 −1 0

 −→
 1 −1 1

0 1 −2

 −→
 1 0 −1

0 1 −2

 .
Now x3 is a free variable; set it to 1 and use back substitution to �nd x1 and x2.

You get exactly (x1, x2, x3) = (1, 2, 1) as above; this special solution forms a basis for

N(AT ).

Similarly, the row space of A, i.e., C(AT ), is the orthogonal complement of N(A), so

it consists of solutions (x1, . . . , x5) to the equation


1 −2 1 0 0

3 −2 0 1 0

6 5 0 0 1





x1

x2

x3

x4

x5


=


0

0

0

 .

One could solve this by Gaussian elimination, but it's probably easiest to observe

that, if you reversed the order of the columns, the 3 × 5 matrix would already be in

reduced row-echelon form, so the special solutions can be found by setting (x1, x2) to

(1, 0) or (0, 1), and solving for (x3, x4, x5). In this way, we get the special solutions

(1, 0,−1,−3,−6) and (0, 1, 2, 2,−5); these two vectors form a basis for C(AT ).

(c) (6 pts.) Write down an example of such a matrix A.

Thanks to our answer to (b), we know that A has the same column space as
1 0

0 1

−1 −2


(you could also just say 

1 2

−1 −1

1 0


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here, but our method makes the subsequent computations a bit easier). Also from our

answer to (b), we know that A has the same row space as 1 0 −1 −3 −6

0 1 2 2 −5

 .
So A is any matrix of the form

1 0

0 1

−1 −2

B
 1 0 −1 −3 −6

0 1 2 2 −5

 ,
where B is an invertible 2× 2 matrix (if you don't see why, please ask). For example,

if we take B to be the identity, we get

A =


1 0 −1 −3 −6

0 1 2 2 −5

−1 −2 −3 −1 16

 .
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