1 (30 pts.)

(a) (25 pts.) Compute the determinant (as a function of x) of the 4×4 matrix

$$A = \begin{bmatrix} x & x & x & x \\ x & x & 0 & 0 \\ x & 0 & x & x \\ x & 0 & x & 1 \end{bmatrix}$$

(Note that all the entries x in the matrix represent the same number.)

(b) (5 pts.) Find all values of x for which A is singular.

2 (35 pts.)

Let P_1 be the projection matrix onto the line through (1, 1, 0) and P_2 is the projection matrix onto the line through (0, 0, 1).

- (a) (15 pts.) Compute $P = P_2P_1$. Note that there is a harder way and an easier way to perform this computation. Either way is valid. (The easier way uses associativity of matrix multiplication. Always a useful trick.)
- (b) (5 pts.) Is $P = P_2 P_1$ a projection matrix? (Explain simply.)
- (c) (15 pts.) What are the four fundamental subspaces associated with P?

3 (35 pts.)

- (a) (10 pts.) Perform Gram Schmidt on the two vectors u=(1,1,1,1) and $t=(t_1,t_2,t_3,t_4)$. The answer should be in the form q_1 and q_2 , an orthonormal pair of vectors. You may wish to use the notation \bar{t} for the mean of t, and $||t-\bar{t}u||$ for the norm of $t-\bar{t}u$.
- (b) (10 pts.) Write a "QR" decomposition of $[u\ t]$, i.e. find a 4×2 matrix Q, and a 2×2 matrix R such $[u\ t]=QR$, where $Q^TQ=I$, and $R_{2,1}=0$.
 - (c)(5 pts.) When is R singular?

(d)(10 pts) Use the QR decomposition of $A = [u \ t]$ (and not the normal equations with $A^T A$), to compute the slope of the best fit line C + Dt to the data (t_i, b_i) for i = 1, 2, 3, 4. (In other words, compute a simple expression for D.)

This page intentionally blank.

This page intentionally blank.