
18.06 Problem Set 7 Solutions

Problem 1: Do problem 11 from section 8.3.

Solution A Markov matrix must conserve probability. Hence the columns must
sum to 1:

A =

 .7 .1 .2
.1 .6 .3
.2 .3 .5

 (1)

The steady state vector x satisfies Ax = x. In otherwords, x is an eigenvector of A
with eigenvalue 1. Therefore x solves:

(A− I)x =

 −.3 .1 .2
.1 −.4 .3
.2 .3 −.5

 x1

x2

x3

 = 0 (2)

∼

 0 −.11 .11
.1 −.4 .3
0 .11 −.11

 x1

x2

x3

 = 0 (3)

(4)

Take x3 = 1, then x2 = 1 and .1x1 = .4− .3 = .1 so x1 = 1 and x = (111)T .
In general, a symmetric Markov matrix AT = A has a steady solution x =

(111)T . This follows from:

• A is Markov → columns of A sum to 1.

• AT = A → rows of A sum to 1.

• The vector x = (111)T sums the row elements. Hence, Ax = x.

Problem 2: Do problem 12 from section 8.3.

Solution

B = (A− I)x =

(
−.2 .3
.2 −.3

)
(5)
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The eigenvalues satisfy the characteristic equation:

(−.2− λ)(−.3− λ)− (.2)(.3) = 0 (6)

λ(λ+ .5) = 0 (7)

The eigenvalues are λ = 0 and λ = −.5.
In general, when A is Markov, A− I will have a λ = 0 eigenvalue. Specifically,

this follows from the (more general) fact that if µ is an eigenvalue of any matrix
A, then µ− c is an eigenvalue of A− cI. Markov matrices have an eigenvalue of 1,
hence A− I must have an eigenvalue 1− 1 = 0.

The eigenvectors of B are, x1 = (.3, .2)T corresponding to λ = 0, and x2 =
(1,−1)T corresponding to λ = −0.5. A general solution to the ODE du

dt
= (A− I)u

has the form:

u = c1e
0·tx1 + c2e

−.5tx2 (8)

Here c1 and c2 are integration constants (determined by initial values). As t→∞,
u becomes:

u → c1x1 (9)

Problem 3: Do problem 16 section 8.3.

Solution

A =

 .4 .2 .3
.2 .4 .3
.4 .4 .4

 (10)

Since A is a Markov matrix, we know λ = 1 is an eigenvalue. In addition, detA = 0,
so λ = 0 must also be an eigenvalue (ie det(A−0 ·I) = 0 ). The third eigenvalue λ =
0.2 can be found by i) inspection, ii) using MATLAB, iii) by direct computation.
Using MATLAB, we can diagonalize A = SΛS−1, where the columns of S are
eigenvectors of A:

S =

 .5145 .7071 −.4082
.5145 −.7071 −.4082
.686 0 .8165

 (11)

Λ =

 1 0 0
0 .2 0
0 0 0

 (12)
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Now Ak = SΛkS−1, so:

Aku0 = (SΛS−1)ku0 (13)

= SΛkS−1u0 (14)

(15)

Since

S−1 =

 .5831 .5831 .5831
.7071 −.7071 0
−.4899 −.4899 .7348

 (16)

then

S−1

 1
0
0

 =

 .5831
.7071
−.4899

 (17)

When we expand out Aku0, we have:

Aku0 = .5831(1)k

 .5145
.5145
.686

+ .7071(0.2)k

 .7071
−.7071

0

+ (−.4899)(0)k

 −.4082
−.4082
.8165

(18)

Hence, as k →∞, Aku0 → .5831(.5145, .5145, .686)T . Similarly, for u0 = (100, 0, 0)T =
100(1, 0, 0)T , we can simply rescale the previous limit found for u0 = (1, 0, 0) by 100:

Aku0 = .5831 · 100

 .5145
.5145
.686

 (19)

Problem 4: Do problem 4 section 6.3.

Solution
To show v + w is a constant, differentiate w.r.t. time:

d

dt
(v + w) = (w − v) + (v − w) (20)

= 0 (21)

We can cast the system into matrix form:

d

dt

(
v
w

)
=

(
−1 1
1 −1

)(
v
w

)
(22)
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The two eigenvalues are λ = 0 and λ = 2 (since the characteristic equation is
λ(λ+ 2) = 0). The corresponding eigenvectors are:

u1 =

(
1
1

)
(23)

for λ = 0 and

u2 =

(
1
−1

)
(24)

for λ = 2.
To find v and w at t = 1 and t → ∞, we solve the initial value problem. The

general solution is: (
v
w

)
= c1

(
1
1

)
+ c2e

−2t

(
1
−1

)
(25)

The initial data v(0) = 30 and w(0) = 10 determine the constants c1 and c2:(
30
10

)
= c1

(
1
1

)
+ c2

(
1
−1

)
(26)

Or c1 = 20 and c2 = 10. Hence v(1) = 20 + 10e−2, w(1) = 20 − 10e−2. Meanwhile
v(∞) = 20, w(∞) = 20.

Problem 5: Do problem 11 in section 6.3.

Solution We have the ODE:

d

dt

(
y
y′

)
=

(
0 1
0 0

)(
y
y′

)
(27)

The solution is: (
y
y′

)
= eAt

(
y(0)
y′(0)

)
(28)

where

A =

(
0 1
0 0

)
(29)
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Note that

A2 =

(
0 0
0 0

)
(30)

and every other power Ak = 0 for k > 1. Therefore eAt = I + At:(
y
y′

)
=

(
1 t
0 1

)(
y(0)
y′(0)

)
(31)

so that we recover y(t) = y(0) + ty′(0).

Problem 6: Do problem 6 in section 10.2.

Solution

• a) If A is a real matrix, then A + ıI is invertible. FALSE. Note that this
statement is equivalent to asking ”can a real matrix have an imaginary eigen-
value?”. Take

A =

(
0 1
−1 0

)
(32)

Then

A+ ıI =

(
ı 1
−1 ı

)
(33)

has determinant ı2 + 1 = 0 so that it is not invertible.

• b) If A is Hermitian then A + ıI is invertible. TRUE. If A is an n × n
Hermitian matrix then A has n real eigenvalues. Therefore A + ıI has n
complex eigenvalues none of which are zero. Therefore A+ ıI is invertible.

• c) If U is unitary then U + ıI is invertible. FALSE. If U is unitary then
every eigenvalue of U is of the form eıθ. We can construct a U which has an
eigenvalue −ı:

U =

(
−ı 0
0 −ı

)
(34)

Note that U∗U = I, while U + ıI = 0 which is not invertible.
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Problem 7: Do problem 15 in section 10.2.

Solution Diagonalize:

K =

(
0 −1 + ı

1 + ı ı

)
(35)

The characteristic equation is:

det(K − λI) = −λ(ı− λ)− (1 + ı)(−1 + ı) (36)

= −λ(ı− λ)− (1 + ı)(−1 + ı) (37)

= λ2 − ıλ− 2ı2 (38)

= (λ− 2ı)(λ+ ı) (39)

For the λ = 2ı eigenvalue:

(K − 2ıI)x =

(
−2ı −1 + ı
1 + ı −ı

)(
x1

x2

)
(40)

Note that the second row of the matrix is just a multiple (−2ı
1+ı

) of the first row. If
we set x1 = 1, then −2ı+ (−1 + ı)x2 = 0 or x2 = 1− ı. The first eigenvector is:

x =

(
1

1− ı

)
(41)

For the eigenvalue λ = −ı:

(K + ıI)y =

(
ı −1 + ı

1 + ı 2ı

)(
y1

y2

)
(42)

We can take y2 = 1, y1 = −1− ı:

y =

(
−1− ı

1

)
(43)

Note that all the eigenvalues are purely imaginary. This follows from K∗ = −K.
If we write H = ıK then H∗ = −ıK∗ = H is Hermitian and therefore has real
eigenvalues.

To diagonalize K in the form requested K = UΛU∗, we must ensure that U is a
unitary matrix (ie. U∗ = ŪT , where Ā means to conjugate every element of matrix
A.). We can construct a unitary U out of the eigenvectors of K provided they are
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normalized to 1. To normalize each eigenvector we multiply them by 1/
√

3. K is
then diagonailzed as:

K =

(
1/
√

3 −(1 + ı)/
√

3

(1− ı)/
√

3 1/
√

3

)(
2ı 0
0 −ı

)(
1/
√

3 (1 + ı)/
√

3

(−1 + ı)/
√

3 1/
√

3

)
(44)

Problem 8: Do problem 16 in section 10.2.

Solution
Diagonalize:

Q =

(
cos θ − sin θ
sin θ cos θ

)
(45)

The characteristic equation is:

det(Q− λI) = (cos θ − λ)2 + sin2 θ (46)

(47)

which yields:

λ = cos θ ± ı sin θ (48)

= e±ıθ (49)

For the λ = cos θ + ı sin θ eigenvalue:

(Q− (cos θ + ı sin θ)I)x =

(
−ı sin θ − sin θ

sin θ −ı sin θ

)(
x1

x2

)
(50)

Note that the second row of the matrix is just a multiple (ı) of the first row. If we
set x1 = 1, then x2 = −ı. The first normalized eigenvector is:

x =
1√
2

(
1
−ı

)
(51)

Note that since Q is a real matrix, both the eigenvalues and eigenvectors must
come in complex conjugate pairs (Why must this be true?). Therefore the second
eigenvector, (for λ = cos θ − ı sin θ ) is:

y =
1√
2

(
1
ı

)
(52)
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Note that all the eigenvalues lie on the complex unit circle. This is always true
for an orthogonal (or unitary) matrix. For instance, if we take an eigenvector x with
eigenvalue λ, we can write Ux = λx and x∗U∗ = λ̄x∗. Mulitplying these row and
column vectors we have: x∗U∗Ux = λλ̄x∗x. Since U∗U = I, and x is nonzero, we
have |λ|2 = 1 or that the magnitude of the eigenvalue is 1.

To diagonalize Q in the form requested Q = UΛU∗:

K =

(
1/
√

2 1/
√

2

−ı
√

2 ı/
√

2

)(
eıθ 0
0 e−ıθ

)(
1/
√

2 ı/
√

2

1/
√

2 −ı/
√

2

)
(53)

Problem 9: Do problem 15 in section 10.3.

Solution
This question concerns counting multiplications for computing convolutions via

FFT. The answer is, each of the two FFT operations require 1/2n log n multipli-
cations. Meanwhile, the convolution (when performed in Fourier space), require n
pointwise multiplications.

The idea behind using FFT for computing fast computations is based on the
formula F (x ∗ y) = F (x) · F (y), where F (x) and F (y) are the Fourier transformed
vectors of x and y, and F (x) ·F (y) implies pointwise multiplication (ie. multiplying
(1, 2, 3) with (4, 5, 6) pointwise yields (4, 10, 18)). The textbook writes this in matrix
notation as x ∗ y = F (E(F−1x)), where E denotes the pointwise multiplication by
F (y) (note the textbook reverses the definition engineers and physics use for a
Fourier transform. This is why F and F−1 have been swapped in the last formula.)

To see why the FFT requires 1/2n log n operations, consider the case when n
is a power of 2, let n = 2m. If x is a vector of length 2n, the FFT relies on the
recursive formula for the kth component F (x)k = F (xeven)k + ωkF (xodd)k. Here
xeven is a vector of length 2n−1 composed of the elements at even locations and xodd
has length 2n−1 with elements at the odd locations, while ω = eı2π/n.

Ie. let x = (x1, x2, x3, x4, x5, x6, x7, x8). Then

F (x)k = x1 + x2ω
k + x3ω

2k + x4ω
3k + x5ω

4k (54)

+ x6ω
5k + x7ω

6k + x8ω
7k (55)

which we regroup as:

F (x)k = (x1 + x3ω
2k + x5ω

4k + x7ω
6k) (56)

+ (x2 + x4ω
2k + x6ω

4k + x8ω
6k)ωk (57)
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and again to:

F (x)k = [(x1 + x5ω
4k) + (x3 + x7ω

4k)ω2k] (58)

+ [(x2 + x6ω
4k) + (x4 + x8ω

4k)ω2k]ωk (59)

Note that in the last equation, the term inside each set of rounded brackets is a
2 element Fourier transform. ie. we need to calculate the term inside the rounded
brackets only when k = 0 and k = 1 since k = 2 corresponds to ω8 = 1. Meanwhile,
the terms inside the rectangular brackets are Fourier transforms of length 4.

Now to count things up, introduce the function Gm as the number of multipli-
cations required to compute F (x) where x has length n = 2m. Then Gm satisfies
the recursion formula:

Gm = 2Gm−1 + 2m/2 (60)

That is to say, each Fourier transform requires i) two Fourier transforms of half
the length, ii) plus 2m/2 additional multiplications required to reconstruct the total
transform. There are 2m/2 additional multiplications and not 2m multiplications
because ωn/2 = −1. Therefore terms such as [(x2 + x6ω

4k) + (x4 + x8ω
4k)ω2k]ωk, for

k = 0 . . . 3 are just negatives of k = 4 . . . 7.
To solve for Gm, note that G0 = 0 and G1 = 1:

Gm = 2(2Gm−2 + 2m−2) + 2m−1 (61)

= 4Gm−2 + 2m−1 + 2m−1 (62)

. . . (63)

= 2mG0 +m2m−1 (64)

= m2m−1 (65)

=
n

2
log2 n (66)

Alternatively, we can use induction. If for example we conjecture Gm = m2m−1,
then certainly G0 = 0, G1 = 1. Then for Gm+1 = 2Gm + 2m. Using the induction
hypothesis:

Gm+1 = 2m2m−1 + 2m (67)

= 2m(m+ 1) (68)

= 2(m+1)−1(m+ 1) (69)

Hence, Gm = m2m−1 holds for all integers m.
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