18.06 Problem Set 7 Solutions

Problem 1: Do problem 11 from section 8.3.

A Markov matrix must conserve probability. Hence the columns must

sum to 1:
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The steady state vector = satisfies Az = z. In otherwords, x is an eigenvector of A
with eigenvalue 1. Therefore = solves:
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Take 73 =1, then 7y = 1 and .12, = 4 — .3 =.1s0 z; = 1 and z = (111)7.

In general, a symmetric Markov matrix AT = A has a steady solution z =
(111)™. This follows from:

e A is Markov — columns of A sum to 1.

e AT = A — rows of A sum to 1.

e The vector x = (111)7 sums the row elements. Hence, Ax = z.

Problem 2: Do problem 12 from section 8.3.



The eigenvalues satisfy the characteristic equation:

(—2-M\)(=3-X)—(2)(3) = 0 (6)
AA+.5) = 0 (7)

The eigenvalues are A = 0 and A = —.5.

In general, when A is Markov, A — I will have a A\ = 0 eigenvalue. Specifically,
this follows from the (more general) fact that if u is an eigenvalue of any matrix
A, then p — ¢ is an eigenvalue of A — ¢I. Markov matrices have an eigenvalue of 1,
hence A — I must have an eigenvalue 1 — 1 = 0.

The eigenvectors of B are, x; = (.3,.2)7 corresponding to A = 0, and x; =
(1,—1)T corresponding to A = —0.5. A general solution to the ODE % = (A — I)u

has the form:
u = "%y + coe %y (8)

Here ¢; and ¢, are integration constants (determined by initial values). As t — oo,
u becomes:

u — Xy (9)

Problem 3: Do problem 16 section 8.3.

A = (10)

IS
OIS
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Since A is a Markov matrix, we know A = 1 is an eigenvalue. In addition, detA = 0,
so A = 0 must also be an eigenvalue (ie det(A—0-1) = 0 ). The third eigenvalue A =
0.2 can be found by i) inspection, ii) using M AT LAB, iii) by direct computation.
Using MATLAB, we can diagonalize A = SAS~!, where the columns of S are
eigenvectors of A:

5145 7071 —.4082

S=| 5145 —7071 —.4082 (11)
686 0 8165
10 0
A=|0 20 (12)
00 0
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Now A* = SA¥S~! so:

Akuo = (SAS‘I)kuo (13)
= SA*S™'ug (14)
(15)
Since
5831 5831 5831
St o= 7071 —.7071 0 (16)
—.4899 —.4899 .7348
then
1 5831
sTtlo | = 7071 (17)
0 —.4899

When we expand out A¥ug, we have:

5145 7071 —.4082
Afug = 5831(1)% [ 5145 | +.7071(0.2)" [ —.7071 | + (—.4899)(0)* [ —.4082 |(18)
686 0 8165

Hence, as k — oo, A¥uy — .5831(.5145,.5145,.686)7. Similarly, for ug = (100, 0, 0)T =
100(1,0,0)7, we can simply rescale the previous limit found for ug = (1,0,0) by 100:

5145
AFuy = .5831-100 | 5145 (19)
.686
Problem 4: Do problem 4 section 6.3.
To show v 4+ w is a constant, differentiate w.r.t. time:
d
E(v—i—w) = (w—v)+(v—w) (20)
=0 (21)

We can cast the system into matrix form:

()= )0 @)



The two eigenvalues are A = 0 and A = 2 (since the characteristic equation is
A(A 4 2) = 0). The corresponding eigenvectors are:

m:(}) (23)

w=( ) 2)
for A = 2.

To find v and w at t = 1 and ¢ — oo, we solve the initial value problem. The

general solution is:
v 1 _ 1
(w):q(l)—l—cze%(_l) (25)

The initial data v(0) = 30 and w(0) = 10 determine the constants ¢; and cy:

() -o(1)o( 1)

Or ¢; = 20 and ¢ = 10. Hence v(1) = 20 + 10e™2, w(1) = 20 — 10e~2. Meanwhile
v(o0) = 20, w(oo) = 20.

for A =0 and

Problem 5: Do problem 11 in section 6.3.

We have the ODE:

ilv)=(50)(7) e

The solution is:

where

A_<8é> (29)



Note that

> (00
#=(00)

and every other power A¥ = 0 for k > 1. Therefore e4* = I + At:

()= ) ()
so that we recover y(t) = y(0) + ty'(0).

Problem 6: Do problem 6 in section 10.2.

(30)

(31)

e a) If A is a real matrix, then A + ¢/ is invertible. FALSE. Note that this
statement is equivalent to asking ”can a real matrix have an imaginary eigen-

value?”’. Take

Then

A—l—ZI:( 1 1)
-1

has determinant 2 + 1 = 0 so that it is not invertible.

e b) If A is Hermitian then A + ¢/ is invertible. TRUE. If A is an n x n
Hermitian matrix then A has n real eigenvalues. Therefore A + 2/ has n
complex eigenvalues none of which are zero. Therefore A + ¢I is invertible.

e ¢) If U is unitary then U + ¢/ is invertible. FALSE. If U is unitary then
every eigenvalue of U is of the form €. We can construct a U which has an

eigenvalue —u:

Note that U*U = I, while U + «I = 0 which is not invertible.

(34)



Problem 7: Do problem 15 in section 10.2.

Diagonalize:

K:(liz _1;”) (35)

The characteristic equation is:

det(K — M) = —A1—A) = (1+12)(=1+12) (36)
= =Ae—=A)—(1+2)(=1+2) (37)
= A7 =\ — 2/ (38)
= A=2)(A+72) (39)

For the A = 21 eigenvalue:

(K — 2u0)x = < 1_+221 _1_:” ) ( . ) (40)

Note that the second row of the matrix is just a multiple (;—f;) of the first row. If

we set #1 = 1, then —21+ (=14 2)zy = 0 or x5 = 1 — 2. The first eigenvector is:

1
X = ( 1—, ) (41)
For the eigenvalue A = —u:

(K+z[)y:<1_ZH _1%“)(;2) (42)

We can take yo =1,y = —1 —

y=( ) (4

Note that all the eigenvalues are purely imaginary. This follows from K* = — K.
If we write H = +K then H* = —K* = H is Hermitian and therefore has real
eigenvalues.

To diagonalize K in the form requested K = UAU*, we must ensure that U is a
unitary matrix (ie. U* = UT, where A means to conjugate every element of matrix
A.). We can construct a unitary U out of the eigenvectors of K provided they are



normalized to 1. To normalize each eigenvector we multiply them by 1/4/3. K is
then diagonailzed as:

(o ) 2

Problem 8: Do problem 16 in section 10.2.

Diagonalize:

sinf cosf

QZ(cose —sin@) (15)

The characteristic equation is:

det(Q —NI) = (cosf — \)? +sin® 0 (46)
(47)
which yields:
A = cosf +1sinf (48)
= (49)

For the A\ = cosf + 1sin § eigenvalue:

(Q — (cosd + 1sin6)T)x = ( “usinf o —sing ) ( o ) (50)

sinff  —usind T9

Note that the second row of the matrix is just a multiple (z) of the first row. If we
set x1 = 1, then x5 = —2. The first normalized eigenvector is:

(1)

Note that since @) is a real matrix, both the eigenvalues and eigenvectors must
come in complex conjugate pairs (Why must this be true?). Therefore the second
eigenvector, (for A = cosf —1s8inf ) is:

()

7



Note that all the eigenvalues lie on the complex unit circle. This is always true
for an orthogonal (or unitary) matrix. For instance, if we take an eigenvector x with
eigenvalue A\, we can write Uz = Az and 2*U* = Az*. Mulitplying these row and
column vectors we have: z*U*Uz = Aax*z. Since U*U = I, and x is nonzero, we
have |A\|*> = 1 or that the magnitude of the eigenvalue is 1.

To diagonalize Q in the form requested Q) = UAU™:

(NG S e

Problem 9: Do problem 15 in section 10.3.

This question concerns counting multiplications for computing convolutions via
FFT. The answer is, each of the two FFT operations require 1/2nlogn multipli-
cations. Meanwhile, the convolution (when performed in Fourier space), require n
pointwise multiplications.

The idea behind using FFT for computing fast computations is based on the
formula F(x *y) = F(x) - F(y), where F(x) and F(y) are the Fourier transformed
vectors of x and y, and F(z)- F(y) implies pointwise multiplication (ie. multiplying
(1,2,3) with (4, 5, 6) pointwise yields (4, 10, 18)). The textbook writes this in matrix
notation as z * y = F(E(F~'x)), where FE denotes the pointwise multiplication by
F(y) (note the textbook reverses the definition engineers and physics use for a
Fourier transform. This is why F' and F~! have been swapped in the last formula.)

To see why the FFT requires 1/2nlogn operations, consider the case when n
is a power of 2, let n = 2™. If z is a vector of length 2", the FFT relies on the
recursive formula for the kth component F(z); = F(Tepen)r + W F(Togq)r. Here
Teven 18 a vector of length 27~! composed of the elements at even locations and Z,4q
has length 27! with elements at the odd locations, while w = e*>7/".

le. let © = (w1, 29, 3, T4, T5, T, T7, Tg). Then

F(.ﬁlﬁ)k = 21+ Qfgwk + x3w2k + x4w3k + x5w4k (54)

+ 26w 4+ 27w + 2w ™ (55)
which we regroup as:

F(x), = (z1+ 230 + 250" + 270%) (56)

+ (T2 + 140 + 2ew™ + 20 )" (57)



and again to:

F(x), = [(1+ 250™) + (23 + 270"%)0] (58)
+  [(zg 4+ zew™) + (24 + 230 w?]WF (59)

Note that in the last equation, the term inside each set of rounded brackets is a
2 element Fourier transform. ie. we need to calculate the term inside the rounded
brackets only when k& = 0 and k = 1 since k = 2 corresponds to w® = 1. Meanwhile,
the terms inside the rectangular brackets are Fourier transforms of length 4.

Now to count things up, introduce the function G,, as the number of multipli-
cations required to compute F(x) where = has length n = 2™. Then G,, satisfies
the recursion formula:

Gy = 2G o1 + 272 (60)

That is to say, each Fourier transform requires 7) two Fourier transforms of half
the length, ii) plus 2 /2 additional multiplications required to reconstruct the total
transform. There are 2™ /2 additional multiplications and not 2™ multiplications
because w™? = —1. Therefore terms such as [(25 + zew**) + (24 + 25w W*|WF, for
k=0...3 are just negatives of k =4...7.

To solve for GG,,, note that Go = 0 and G; = 1:

Gmn = 222G o+2"%) +2m71 (61)
= 4G9+ 2y oml (62)
. (63)
= 2"Go+m2™! (64)
= m2m! (65)
n
= 3 logy, n (66)

Alternatively, we can use induction. If for example we conjecture G,,, = m2™ 1,
then certainly Gog = 0, G; = 1. Then for G,,.1 = 2G,, + 2™. Using the induction
hypothesis:

Gms1 = 2m2m ' 42m (67)
= 2"(m+1) (68)
2= (1 4 1) (69)

Hence, G,,, = m2™~! holds for all integers m.



