
18.06 Problem Set 3 Solutions

Please note that the book problems listed below are out of the 4th edition. Please
make sure to check that you are doing the correct problems.

Problem 1: Do problem 12 from section 3.3.(10pts)

Solution
If a matrix A has rank r, then the (dimension of the column space) = (dimension

of the row space) = r. To find an invertible submatrix S, we need to find r linearly
independent rows and r linearly independent columns. The choice of these columns
and rows need not be unique - however the question suggests that we take the pivot
rows and pivot columns.

For matrix A, after one row and column reduction:

A =

(
1 2 3
1 2 4

)
∼

(
1 2 3
0 0 1

)
∼

(
1 2 0
0 0 1

)
(1)

Here the 1st and 3rd columns are linearly independent, while the 1st and 2nd rows
are also linearly independent. Hence rank A = 2. An appropriate submatrix is:

SA =

(
1 3
1 4

)
(2)

Note also that

SA =

(
2 3
2 4

)
(3)

would work, however

SA =

(
1 2
1 2

)
(4)

would not! For matrix B:

B =

(
1 2 3
2 4 6

)
∼

(
1 2 3
0 0 0

)
(5)

Hence, rank B = 1:
SB =

(
1

)
(6)

For matrix C, the rows and columns are already reduce - we only need to permute
them to obtain echelon form.

C =

 0 1 0
0 0 0
0 0 1

 (7)
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rank C = 2, deleting the first column and middle row:

SC =

(
1 0
0 1

)
(8)

Problem 2: Do problem 21 from section 3.4.(10pts)

Solution
a) x + y + z = 4 is equivalent to the matrix equation:

Ax = 4 (9)

A =
(

1 1 1
)

(10)

We seek the most general solution in the form x = xp + xn, where xn is a homoge-
neous solution to:

Axn = 0 (11)

First note that rank A is r = 1, while the size of A is m = 1 and n = 3. Therefore
A has infinitely many solutions. Moreover, there are n− r = 2 linearly independent
homogeneous solutions. To find the general solution, parameterize the null space as
follows. Let y = c1, z = c2 (we need two constants since the dimension of the null
space is 2). Write x = 4− y − z, so that x = 4− c1 − c2. In vector form:

x =

 4− c1 − c2

c1

c2

 =

 4
0
0

 + c1

 −1
1
0

 + c2

 −1
0
1

 (12)

We can check that this is a solution for any constants c1 and c2. Specifically:

xp =

 4
0
0

 (13)

is a particular solution Axp = 4, while

xn = c1

 −1
1
0

 + c2

 −1
0
1

 (14)

is the homogeneous solution Axn = 0 (Note that the null space of A is spanned by
the two linearly independent vectors (−1, 1, 0)T and (−1, 0, 1)T )
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b) We have:

A =

(
1 1 1
1 −1 1

)
(15)

A

 x
y
z

 =

(
4
4

)
(16)

Row reduce both sides:(
1 1 1 | 4
1 −1 1 | 4

)
∼

(
1 1 1 | 4
0 −2 0 | 0

)
∼

(
1 0 1 | 4
0 1 0 | 0

)
(17)

(18)

From the row reduction, we see A has two linearly independent rows and columns
so that rank r = 2, n = 2 and m = 3. The second equation implies y = 0. The
first equation is under-determined corresponding with the fact that the null space
of A has dimension m − r = 1. To parameterize the solutions let z = c1 so that
x = 4− z = 4− c1. The solution is:

x =

 4− c1

0
c1

 (19)

=

 4
0
0

 + c1

 −1
0
1

 (20)

or

xp =

 4
0
0

 (21)

xh = c1

 −1
0
1

 (22)
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Problem 3: When we perform elimination via row operations on a matrix A to
end up with an upper triangular matrix U , we know this operation can be expressed
as multiplication by an elimination matrix E so that EA = U . Why does E change
the column space of A but not the nullspace? Give an example of A such that EA
has a different column space. Explain why the nullspace of A and U are the same.
(10pts)

Solution
The product y = Ax (for all vectors x) defines the column space of A. Meanwhile

the null space of A is any vector x such that Ax = 0. Multiplying by an elimination
matrix E changes the column space (when rank A < n = size of columns), but not
the null space.

Multiplying by E acts on the rows of A. If rank A is < size of the columns, then
row reduction yields a zero row. A zero row implies the column space will never
have components in the row with a zero. The original column space matrix product
Ax could however have nonzero elements in any given component (Precisely, the
preservation of the column space by a matrix E implies that for every vector x1,
there is a vector x2 such that Ax2 = EAx1. When A is not invertible (or more
precisely rank A < n = size of columns) this is false).

Multiplication by E preserves the null space of A. E is the product of many
elimination matrices - each of which is invertible. Hence, E is invertible. If Ax = 0,
then certainly E(Ax) = E0 = 0. Meanwhile if EAx = 0, then since E−1 exists, it
follows that Ax = 0.

An example of A such that EA has a different column space:

A =

(
1 2
2 4

)
(23)

take

E =

(
1 0
−2 1

)
(24)

so that

EA =

(
1 2
0 0

)
(25)

The column space of A is:

C(A) = c

(
1
2

)
(26)
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while the column space of EA is:

C(EA) = c

(
1
0

)
(27)

Here c is an arbitrary constant.
A and U have the same null space. We can row reduce A by the product of

many elimination matrices E so that EA = U . Since each elimination matrix is
invertible, then the product E is also invertible. From an identical argument made
above, it follows that Ux = 0 ⇐⇒ Ax = 0.

Problem 4: Suppose that a is a real, nonzero number. Consider the matrix
a b c c
a a b c
a a a b
a a a a

 .

Find the row reduced echelon form and the nullspace of A when:

(a) a 6= b (3pts)

(b) a = b and b 6= c (4pts)

(c) a = b = c. (3pts)

Solution Reduce the matrix into upper triangular form:
a b c c
a a b c
a a a b
a a a a

 ∼


a b c c
0 a− b b− c 0
0 a− b a− c b− c
0 a− b a− c a− c

 (28)

∼


a b c c
0 a− b b− c 0
0 0 a− b b− c
0 0 a− b a− c

 ∼


a b c c
0 a− b b− c 0
0 0 a− b b− c
0 0 0 a− b

 (29)

a) When a 6= b, the matrix has echelon form:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (30)
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so that the null space is just x = 0.
b) When a = b, b 6= c the matrix has echelon form:

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 (31)

The null space has dimension 1:

x = c


1
−1
0
0

 (32)

c) When a = b = c the matrix has echelon form:
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 (33)

The null space has dimension 3:

x = c1


1
−1
0
0

 + c2


1
0
−1
0

 + c3


1
0
0
−1

 (34)

Problem 5: (MATLAB problem!)

(a) Define a 4 by 4 random matrix A and column vector b:
A= rand(4); b = [1;1;1;1]; Solve the equation Ay=b by typing:
y = A \ b Type: A*y - b What do you get? (2pts)

(b) Write a program to define a matrix A such that Ai,j = e15(i+j). To do this we
write:
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for i=1:4

for j=1:4

A(i,j)=exp(15*(i+j));

end

end

A=A.*rand(4);

b=[1;1;1;1];

The command A.∗ rand(4) multiplies each entry in A termwise by a random
number. We do this so that our matrix A is not so singluar. Now, type:
x = A \ b. What is Ax− b? (3pts)

(c) In part (b), why is Ax− b so far from 0? Notice that Ax− b should be equal
to 0, because x is supposed to be a solution to the equation Ax = b. Hint: In
essence, imagine that to solve for x, MATLAB is row reducing. Note that in
MATLAB 10−17 = 0 because MATLAB only sees 16 significant figures. (Type:
format long and look at 10−16 and compare to 10−17.) (5pts)

Solution a) Hopefully, you get 0.

b) You’ll find Ax− b =


0
0
0
something large and nonzero.


c) The smallest element of A is A(1, 1) ∼ 1013, while A(4, 4) ∼ 1051. When

performing floating point arithmetic, MATLAB only keeps 16 decimals (note that
when inverting a random matrix, MATLAB will construct an LU factorization fol-
lowed by performing a sequence of forward and back substitutions). During the
inversion process, the 1’s on the RHS, will be divided by numbers exceeding 1016.
Consequently, MATLAB effectively solves Ax = 0 and not Ax = b.
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Problem 6: Do problem 35 from section 3.2 in the book.
Solution

Expand out in block form. Let u = [x;y]T be an 8 element column vector where
x and y are 4 element column vectors. Then B = [A; A] multiplies out:

Bu = Ax + Ay (35)

For u ∈ N(B):

Bu = 0 (36)

Ax + Ay = 0 (37)

A−1(Ax + Ay) = 0 (38)

x = −y (39)

Hence, the null space is described by:

u = c1

(
x1

−x1

)
+ c2

(
x2

−x2

)
+ c3

(
x3

−x3

)
+ c4

(
x4

−x4

)
(40)

where the jth element of xi = 1 if j = i and 0 if j 6= i. One can also write:

u =

(
I
−I

) 
c1

c2

c3

c4

 (41)

where I is the 4× 4 identity matrix.

Problem 7:

1. Suppose A is a matrix such that A2 = A. (5pts) True or False

(a) N(A) is a subspace of C(A).

(b) C(A) is a subspace of N(A).

(c) The only vector common to both spaces is 0.

2. Suppose A is a matrix such that A2 = 0. (5pts) True or False

(a) N(A) is a subspace of C(A).

(b) C(A) is a subspace of N(A).
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(c) The only vector common to both spaces is 0.

Be sure to justify your answers and explain why each option is true, or give an
example of how it fails.
Solution Question 1)

1. N(A) is a subspace of C(A) - False. Take

A =

(
1 0
0 0

)
(42)

The null space is:

N(A) = c

(
0
1

)
(43)

The column space is:

C(A) = c

(
1
0

)
(44)

2. C(A) is a subspace of N(A) - False (same example as above).

3. The only vector common to both spaces is 0 - True. Matrices A2 = A are
called projectors. They are special in the sense that they project a vector x
onto the column space of A. Explicitly, we can write B = I−A. Then B2 = B
(is also a projector), AB = BA = 0 and A + B = I. Given any vector x, we
may now uniquely decompose x = u + v, where u = Ax and v = Bx. Now
suppose x ∈ C(A). Then x = Ay for some y, which means v = Bx = BAy = 0
and so u = x. Meanwhile if x ∈ N(A) then Ax = 0 so that u = 0 and v = x.
Therefore, if x ∈ N(A) and x ∈ C(A), it follows that u = v = 0, so that
x = u + v = 0. Note that for a projector A, all vectors x decompose into a
piece u ∈ C(A) and a piece v ∈ N(A).

Question 2)

1. N(A) is a subspace of C(A) - False. Take

A =

 0 0 1
0 0 0
0 0 0

 (45)
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The null space is:

N(A) = c1

 1
0
0

 + c2

 0
1
0

 (46)

The column space is:

C(A) = c

 1
0
0

 (47)

2. C(A) is a subspace of N(A) - True. If x ∈ C(A) then x = Ay for some y. It
follows that Ax = A2y = 0, so that x ∈ N(A).

3. The only vector common to both spaces is 0 - False. This follows from property
2) above with an explicit construction in 1).
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