
SOLUTIONS TO PSET 6

Problem 1. (5 points each) a) 1 = det(I) = det(QtQ) = det(Qt)det(Q) = (det(Q))2,
so det(Q) =±1.

b) Suppose that |det(Q)| > 1. Then we have that, for each m, |det(Qm)| = |det(Q)|m,
which goes to ∞ as m → ∞. But Qm is an orthogonal matrix for each m. So we have
to show that |det(U)| is uniformly bounded as U ranges over all orthonormal matrices.
But consider the big sum: |det(U)| ≤ ∑σ |u1σ(1)u2σ(2)...unσ(n)|. Since U is orthogonal,
each column has length 1, and so we have |ui j| ≤ 1 for all i, j. But then we can estimate
|det(U)| ≤∑σ 1 = n!; so we have obtained a uniform bound as required. If instead we had
started with |det(Q)| < 1, then we simply replace Q with Q−1(which is also orthogonal)
and repeat the argument.

Problem 2. (5 points each)

1.

101 201 301
102 202 302
103 203 303

→

101 100 200
102 100 200
103 100 200

, so det = 0.

2.

1 t t2

t 1 t
t2 t 1

 →

−t2 +1 0 0
t 1 t
0 0 −t2 +1

 →

−t2 +1 0 0
t 1 0
0 0 −t2 +1

 so det =

(1− t2)2.
Problem 3. (2.5 points each)
a) True; det(A) = 0 implies det(AB) = det(A)det(B) = 0.

b) False, just consider a matrix where you need one row exchange: det
(

0 1
1 1

)
=

−det
(

1 1
0 1

)
=−1.

c) False, let A =
(

0 0
1 0

)
and B =

(
0 1
0 0

)
.

d)True, both det(AB) and det(BA) are equal to det(A)det(B).
Problem 4. (5 points each)

a) If you look at the first three columns, you see three vectors of the form


x
x
0
0
0

. But

vectors of this form span a two-dimensional subspace. Since three vectors in a two dimen-
sional subspace are linearly dependent, the determinant must be zero.

b) Take any term in the big sum. It is a product of five terms, three of which come from
the first three columns. As these three must come from three distinct rows, one of them
must be zero.

Problem 5. (5 points each)
1
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1. For A =
(

2 1
3 6

)
, se have that M11 = 6, M12 = 3, M21 = 1, M22 = 2, so C =(

6 −3
−1 2

)
.

For B =

1 2 3
4 5 6
7 0 0

, we have that C =

 0 42 −35
0 −21 14
−3 6 −3

 and det(B) = 7 ∗−3 =

−21 (computing using the third row).

2. A =

 2 −1 0
−1 2 −1
0 −1 2

, so C =

3 2 1
2 4 2
1 2 3

 and ACt =

 2 −1 0
−1 2 −1
0 −1 2

3 2 1
2 4 2
1 2 3

 =4 0 0
0 4 0
0 0 4

 as required.

Problem 6. (4,3, and 3 points)
a) For this, just look at the big sum. Each term involves one element of each column. We

need to select elements from the first two columns; only those selections with all elements
from A can be nonzero. Then we need to select from the last two rows, but since one
element from each column of A has been chosen, we can only select elements from D.
Thus the determinant has four nonzero terms, it is easily verified that the product (a11a22−
a12a21)(d11d22−d12d21) consists of exactly the required terms.

b)The matrix


1 0 1 0
0 1 0 1
0 −1 0 1
−1 0 1 0

 has orthogonal columns (in fact, 1/2 times it is or-

thonormal), so it is invertible. However, |A||D|− |B||C|= 1(−1)− (1)(−1) = 0.

c) The matrix


1 1 1 1
0 1 1 1
1 1 1 0
1 1 1 1

 is singular; but the expression det(AD−CB) =−1.

Problem 7. (5 points each)
a) we get x1 = det(B1)/det(A), Cramer’s rule.
b) The middle equality is det

(
x1a1 + x2a2 + x3a3 a2 a3

)
= det

(
x1a1 a2 a3

)
+

det
(
x2a2 a2 a3

)
+det

(
x3a3 a2 a3

)
= x1det(A).

Problem 8. (5 points each)
a) we know that L−1 is given by (1/det(L))Ct , where C is the cofactor matrix. To see

that Ct is lower triangular, we should show that C is upper triangular. But, the cofactors
coming from b, d, and e are all determinants of 2× 2 matrices with a row (or column) of
zero’s; hence are equal 0.

b) this follows by examining the cofactors coming from “mirror” terms in the matrix.
Problem 9. (5 points each)
1. The lengths of the two columns are 1 and r. Thus J = r.

2. The inverse of
(

cos(θ) −rsin(θ)
sin(θ) rcos(θ)

)
is

(
cos(θ) sin(θ)

−sin(θ)/r cos(θ)/r

)
, whose determi-

nant is 1/r. The chain rule he states here comes down to cos2(θ)+ sin2(θ) = 1.


