This problem is meant to illustrate how to do a number of basic matrix operations in the language of your choice. Also
to consider whether the 2n® operation counts for inverse and matmul, and the (2/3)n? for solve and lu are enough to
predict what a computer’s speed is. You might wish to mention in your homework, if you know your machine’s

processor and operating system. | just got a new machine running 32 bit Windows Vista on an Intel quadcore Q6700
processor running at 2.66GHz.

This means that every second, 2.66 billion instructions can be sent to each of four processors . Each processor can do
both a multiply and an add in each cycle for a total of 2.66 * 8 or about 21 billion multiplies or adds per second.

Mathematica (and | did try MATLAB) took advantage of the parallelism somewhat, with Mathematica doing a bit of a
better job than MATLAB in performance.

The Python numbers were run on a different machine as | couldn’t load it onto Vista. If anyone succeeds please tell me.

Sci

-->n=250; A=rand(n,n); b=rand(n,1);
-->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=Ilu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'
ans =
0.011 0.006 0.007 0.006
-->n=500; A=rand(n,n); b=rand(n,1);
-->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=Ilu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'
ans =
0.081 0.026 0.043 0.043
-->n=1000; A=rand(n,n); b=rand(n,1);
-->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'
I--error 17
lu: stack size exceeded (Use stacksize function to increase it).
-->stacksize
ans =
5000000. 1535300.
-->stacksize(1e8)
-->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=Iu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'
ans =
0.422 0.163 0.197 0.309
-->n=2000; A=rand(n,n); b=rand(n,1);
-->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=Ilu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'
ans =
3.141 1.156 1.516 2.33

TIME IN mili-seconds

n inv solve lu matmul

250 11 6 7 6
500 81 26 43 43
1000 422 163 197 309
2000 3141 1156 1516 2330

Comments: Scilab didn’t take advantage of the quadcore chip. It also has a default memory stacksize which has to be
adjusted to get to n=1000. LU is a bit slower than solve because it forms the permuted matrix moving memory around.
Even though inv and matmul use 2n® operations, matmul takes better advantage of modern computers than inv does.

=

weep- MatrixTiming[a , b] := =
{Timing[Inverse[A];][[1]], Timing[LinearSoclvel[A, B];1[[1]1].,
Timing[LUDecomposition[A];][[1]], Timing[A.A;][[1]]}

»

mes- Do[{ A = RandomReal[l, {n, n}]; b =RandomReal[l, n];
Print[MatrixTiming[A, b]]},
{n, {250, 500, 1000, 2000, 4000}}1 !

m

[1.06998x107**, 1.06998x107**, 1.06998x107**, 1.06998 x107**}]
(0.062, 0.016, 0.031, 0.015} i
{0.187, 0.078, 0.078, 0.125} i
| {1.295, 0.406, 0.468, 0.702}]
{8.065, 2.402, 2.777, 5.304} ill

100% = '

TIME IN mili-seconds

n inv solve lu matmul

250 =0 =0 =0 =0
500 62 16 31 15
1000 187 78 78 125
2000 1295 406 468 702
4000 8065 2402 2777 5304

Comments: This implementation sets up a function “MatrixTiming” to do the timing and a “Do” loop to run through
matrices of size 250,500,etc. The command Timing[expr;][[1]] returns only the time and not the computed result.
Mathematica takes excellent use of the quadcore that | happened to run on.

LU is a bit slower than solve because it forms the permuted matrix moving memory around. Even though inv and
matmul use 2n® operations, matmul takes better advantage of modern computers than inv does.

|| Eile Edit View Misc

EEERERER

Packages Windows Help

IR R Console

> install.packages ("Matrix"™) ;
Warning in install.packages ("Matrix") :
argument 'lib' is missing: using 'C:\Users‘\Edelman‘Documents/R/win-library/2.7"'
——— Please select a CRAN mirror for use in this session —--
trying URL 'http://cran.rakanu.com/bin/windows/contrib/2.7/Matrix 0.999375-14.zip'
Content type 'application/zip' length 2737885 bytes (2.6 Mb)
opened URL
downloaded 2.6 Mb

package 'Matrix' successfully unpacked and MD5 =sums checked
The downloaded packages are in
C:\Users‘\Edelman\AppDataiLocal\Tenp\RtmpmrlUBE\downloaded packages

updating HIML package descriptions

Warning message:

In file.create{f.tg)
cannot create file

> library{(Matrix);

Loading required package: lattice

'C:\PROGRA~1\RY\R-27~1.2/doc/html/packages.html', reason 'Permission denied'

Attaching package: 'Matrix'

The following object (s) are masked from package:stats

xtabs

) S—— Ry B

(n in c(250,500,1000,2000))

» for {d=matrix(runif(n*n),n,n); b=runif(n); AR=Matrix(A):

+ print(c({system.time (solve (&)) [1l],system.time (solve (A,b)) [1],system. time (1lu (RA)) [1],system. time (AT*TA) [1]))}
user.self user.self user.self user.self
0.03 0.00 d.02 0.01
user.self user.self user.self user.self
0.20 0.04 0.06 0.16
user.self user.self user.self user.self
1.75 0.42 0.39 1.65
user.zself user.szelf user.=self user.self
13.85 3.12 2.94 13.82
TIME IN mili-seconds
n inv solve lu matmul
250 30 16 171 0
500 200 62 734 124
1000 1750 328 4602 842
2000 13,650 2325 26551 9672

Comments: My version of R needed the installation of a Matrix Package for the LU. Relatively easy over the internet to
do this and install. Seems to use one core,and inefficiently . | decided to loop over the four matrix sizes and “combine”
(the “c” command) the output times. The system.time(expression)[1] construct gives the user time.

B - - _________

e Drawing Plot Spreadsheet Tools Window Help

S¢ TP EE €= N1 Oy & Bak p @
Text @I Drawing Plot Animation
.\' C 2D math "\ "\’_Tlmes Hew Roman 'j (:_12 v:l B u =

il
=
&
ii
T

with(LinearAlgebra) :

for n in [250, 500, 1000, 2000] do
A = RandomMatrix(n, generator = 0..1.0); b == RandomMatrix(n, 1, generator = 0..1.0) :
st0 == time() : MatrixInverse (A) : st1 = time() : LinearSolve (A, b) : st2 == time () : LUDecomposition(A) : st3 = time () : A.A; std == time() :
print((st1 — st0, st2 — st1, st3 — st2, st4 — st3)) end do:
0.062, 0.016, 0.171, 0.
0281, 0.062, 0733, 0124
1638, 0.328, 4 602, 0.842
14 711, 2.325, 26.551, 9 672

Memary: 993.25M Time: 286.90s

TIME IN mili-seconds

n inv solve lu matmul
250 62 6 7 6
500 281 26 43 43
1000 1638 163 197 309
2000 14,711 1156 1516 2330
The numbers indicate software overheads

Comments: Maple seems inefficient even for numerical matrix operations.

and perhaps disk overheads.

23 from scipy.linalg import lu

24 for n in [HBH.16006.260080]:
print ‘n=', n;
a=rand<n,.n»; b=randin.12;
time invdalr;
time solvefa.h?;
time ludal;
time dotfa,.a>»;

user B.67 total: @.6%
A.67
user B.22 H total: B.22
Wall time: BA.22
CPU times: user B.28 total: B.28
Wall time: B.28
CPU timez: uszer B.38 total: A.38
Wall time: BA.38

n= 18688

user 4.78 total: 4.98

4.98
user 1.46 total: 1.46

all time: 1.47
CPU times: user 1.70 total: 1.78

Wall time: 1.69
times: user 3.33 total: 3.33

i 3.34

user 48.13 s. total: 48.13
468.15

times: user 1B.67 =, total: 18.6%
ime: 1@.67

CPU times: user 12.16 s. total: 12.16
Hall time: 12.16

CPU times: user 26.084 =, total: 26.04
Wall time: 26.85

25

Comments: Like R Enthought Python didn’t have an LU available but it was buried in the scipy.linalg package. How
anyone is supposed to find these things is beyond me, but that’s another story for another day. WARNING: These
timings were on a much older computer so not to be compared with other timings.

