
This problem is meant to illustrate how to do a number of basic matrix operations in the language of your choice. Also

to consider whether the 2n
3
 operation counts for inverse and matmul, and the (2/3)n

3
 for solve and lu are enough to

predict what a computer’s speed is. You might wish to mention in your homework, if you know your machine’s

processor and operating system. I just got a new machine running 32 bit Windows Vista on an Intel quadcore Q6700

processor running at 2.66GHz.

This means that every second, 2.66 billion instructions can be sent to each of four processors . Each processor can do

both a multiply and an add in each cycle for a total of 2.66 * 8 or about 21 billion multiplies or adds per second.

Mathematica (and I did try MATLAB) took advantage of the parallelism somewhat, with Mathematica doing a bit of a

better job than MATLAB in performance.

The Python numbers were run on a different machine as I couldn’t load it onto Vista. If anyone succeeds please tell me.

.

-->n=250; A=rand(n,n); b=rand(n,1);

 -->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'

 ans =

 0.011 0.006 0.007 0.006

 -->n=500; A=rand(n,n); b=rand(n,1);

 -->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'

 ans =

 0.081 0.026 0.043 0.043

 -->n=1000; A=rand(n,n); b=rand(n,1);

 -->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'

 !--error 17

lu: stack size exceeded (Use stacksize function to increase it).

 -->stacksize

 ans =

 5000000. 1535300.

 -->stacksize(1e8)

 -->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'

 ans =

 0.422 0.163 0.197 0.309

 -->n=2000; A=rand(n,n); b=rand(n,1);

 -->tic, inv(A); t(1)=toc(); tic, A\b; t(2)=toc(); tic, [L,U]=lu(A); t(3)=toc(); tic, A*A; t(4)=toc();t'

 ans =

 3.141 1.156 1.516 2.33

TIME IN mili-seconds

n inv solve lu matmul

250 11 6 7 6

500 81 26 43 43

1000 422 163 197 309

2000 3141 1156 1516 2330

Comments: SciLab didn’t take advantage of the quadcore chip. It also has a default memory stacksize which has to be

adjusted to get to n=1000. LU is a bit slower than solve because it forms the permuted matrix moving memory around.

Even though inv and matmul use 2n
3
 operations, matmul takes better advantage of modern computers than inv does.

TIME IN mili-seconds

n inv solve lu matmul

250 ≈0 ≈0 ≈0 ≈0

500 62 16 31 15

1000 187 78 78 125

2000 1295 406 468 702

4000 8065 2402 2777 5304

Comments: This implementation sets up a function “MatrixTiming” to do the timing and a “Do” loop to run through

matrices of size 250,500,etc. The command Timing[expr;][[1]] returns only the time and not the computed result.

Mathematica takes excellent use of the quadcore that I happened to run on.

LU is a bit slower than solve because it forms the permuted matrix moving memory around. Even though inv and

matmul use 2n
3
 operations, matmul takes better advantage of modern computers than inv does.

TIME IN mili-seconds

n inv solve lu matmul

250 30 16 171 0

500 200 62 734 124

1000 1750 328 4602 842

2000 13,650 2325 26551 9672

Comments: My version of R needed the installation of a Matrix Package for the LU. Relatively easy over the internet to

do this and install. Seems to use one core,and inefficiently . I decided to loop over the four matrix sizes and “combine”

(the “c” command) the output times. The system.time(expression)[1] construct gives the user time.

 TIME IN mili-seconds

n inv solve lu matmul

250 62 6 7 6

500 281 26 43 43

1000 1638 163 197 309

2000 14,711 1156 1516 2330

Comments: Maple seems inefficient even for numerical matrix operations. The numbers indicate software overheads

and perhaps disk overheads.

Comments: Like R Enthought Python didn’t have an LU available but it was buried in the scipy.linalg package. How

anyone is supposed to find these things is beyond me, but that’s another story for another day. WARNING: These

timings were on a much older computer so not to be compared with other timings.

