							Grading
Your PRINTED name is:							1
							2
							3
Please circle your recitation:							4
							5
							6
1)	T 10	2-131	J.Yu	2-348	4-2597	jyu	7
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa	8
3)	T 10	2-255	Su Ho Oh	2-333	3-7826	suho	9
4)	T 11	2-131	J. Yu	2-348	4-2597	jyu	
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale	
6)	T 12	2-132	J. Pascaleff	2-492	3-4093	jpascale	
7)	T 12	2-131	K. Jung	2-331	3-5029	kmjung	
8)	T 1	2-131	K. Jung	2-331	3-5029	kmjung	
9)	T 1	2-136	V. Sohinger	2-310	4-1231	vedran	
10)	T 1	2-147	M Frankland	2-090	3-6293	franklan	
11)	T 2	2-131	J. French	2-489	3-4086	jfrench	
12)	T 2	2-147	M. Frankland	2-090	3-6293	franklan	
13)	T 2	4-159	C. Dodd	2-492	3-4093	cdodd	
14)	T 3	2-131	J. French	2-489	3-4086	jfrench	
15)	T 3	4-159	C. Dodd	2-492	3-4093	cdodd	

1 (9 pts.) Given real numbers a, b and c, find x, y and z such that the matrix B below is guaranteed to be singular with real eigenvalues and orthogonal eigenvectors.

$$B = \begin{bmatrix} a & b & a+b \\ b & c & b+c \\ x & y & z \end{bmatrix}.$$

2 (12 pts.) The matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & p \end{bmatrix}.$$

- (a) What are the eigenvalues of A (possibly in terms of p)?
- (b) If p is not 0, find an eigenvector that is not in the nullspace.
- (c) What are the singular values of A (possibly in terms of p)?
- (d) Find a nonzero solution u(t) to du/dt = (A + 2009I)u. Check that your answer is correct. (Note that A + 2009I is the matrix above with the upcoming new year added to the diagonal elements.)

3 (8 pts.) A 4x4 square matrix A has singular values 3, 2, 1, and 0. Find an eigenvalue of A. Briefly explain your answer.

- 4 (9 pts.) The square matrix A has QR decomposition A = QR where Q is orthogonal and R is upper triangular with diagonal elements all equal to 1.
 - (a) What is the determinant of $A^{T}A$?
 - (b) What are all the pivots of A^TA ?
 - (c) Are the matrices QR and RQ similar?

5 (5 pts.) All matrices in this question are $n \times n$. We have that $C = A^{-1}BX$. Propose an X which guarantees that B and C have the same eigenvalues.

- 6 (12 pts.) All you are told about a 3×3 matrix A is that five of the nine entries are 1, and the other four are 0. For the ranks below, exhibit a matrix A with this property, or else briefly (but convincingly) argue that it is impossible.
 - (a) A has rank 0.
 - (b) A has rank 2.
 - (c) A has rank 3.

- 7 (10 pts.) (Do two of the three problems below. Please avoid any confusion to the graders as to which two you chose.)
 - (a) All you are told about a 100 by 100 matrix is that all of its entries are **even** integers. Must the determinant be odd? Must the determinant be even? Argue your answer convincingly.
 - (b) Give an example, if possible, of a 100 by 100 matrix with odd integer entries but an even determinant.
 - (c) All you are told about a 100 by 100 matrix is that all of its entries are **odd** integers. Must the determinant be odd? Must the determinant be even? Argue your answer convincingly.

8 (15 pts.) The functions of the form

$$f(x) = c_1 + c_2 e^x + c_3 e^{2x},$$

form a three dimensional vector space V.

- (a) The transformation d/dx can be written as a 2x3 matrix when the domain is specified to have basis $\{1, e^x, e^{2x}\}$, and the range has basis $\{e^x, e^{2x}\}$. Write down this 2x3 matrix.
- (b) On the above three dimensional vector space V, is the evaluation of f at x=7 a linear transformation from that space to R?
- (c) On the above three dimensional vector space V, is the transformation that takes f(x) to $\int_0^x f(t)dt$ a linear transformation from that three dimensional space to itself (from V to V)?

- 9 (20 pts.) Suppose an n by n matrix has the property that its nullspace is equal to its column space.
 - (a) Can the matrix be the zero matrix?
 - (b) Possibly in terms of n, what is the rank of the matrix?
 - (c) What are the eigenvalues of this matrix? (Briefly explain your answer. Hint: It might be useful to consider applying A more than once in some way.)
 - (d) Give an example of a 2 by 2 such matrix.
 - (e) Perhaps using the previous case twice somehow, give an example of a 4 x 4 such matrix.

