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The Fourier sine series for a functionf(x) defined onx ∈ [0, 1] writesf(x) as

f(x) =
∞∑

n=1

bn sin(nπx)

for some coefficientsbn. Because of orthogonality, we can compute thebn very simply:
for any givenm, we integrate both sides againstsin(mπx). In the summation, this gives
zero forn 6= m, and

∫ 1

0
sin2(mπx) = 1/2 for n = m, resulting in the equation

bm = 2
∫ 1

0

f(x) sin(mπx) dx.

Fourier claimed (without proof) in 1822 thatany function f(x) can be expanded in
terms of sines in this way, even discontinuous function. This turned out to be false for
various badly behavedf(x), and controversy over the exact conditions for convergence
of the Fourier series lasted for well over a century, until the question was finally settled
by Carleson (1966) and Hunt (1968): any functionf(x) where

∫
|f(x)|pdx is finite

for somep > 1 has a Fourier series that convergesalmost everywhereto f(x) [except
at isolated points]. At points wheref(x) has a jump discontinuity, the Fourier series
converges to the midpoint of the jump. So, as long as one does not care about crazy di-
vergent functions or the function value exactly at points of discontinuity (which usually
has no physical significance), Fourier’s remarkable claim is essentially true.

To illustrate the convergence of the sine series, let’s consider a couple of examples.
First, consider the functionf(x) = 1, which seems impossible to expand in sines
because it is not zero at the endpoints, but nevertheless it works...if you don’t care
about the valueexactlyatx = 0 or x = 1. From the formula above, we obtain

bm = 2
∫ 1

0

sin(nπx) dx = − 2
nπ

cos(nπx)
∣∣∣∣1
0

=
{

4
nπ n odd
0 n even

,

and thus

f(x) = 1 =
4
π

sin(πx) +
4
3π

sin(3πx) +
4
5π

sin(5πx) + · · · .

This is plotted for 1, 2, 4, 8, 16, and 32 terms in figure. 1, showing that it does in-
deed approachf(x) = 1 almost everywhere. There is some oscillation at the point of
discontinuity, which is known as aGibb’s phenomenon.
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Figure 1: Fourier sine series forf(x) = 1, truncated to a finite number of terms (from
1 to 32), showing that the series indeed converges everywhere tof(x), except exactly
at the endpoints, as the number of terms is increased.
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Note that then even coefficents were zero. The reason for this is simple: for even
n, thesin(nπx) function isodd around the midpointx = 1/2, whereasf(x) = 1 is
even around the midpoint, so the integral of their product is zero.

Now, let’s try another example, one for which the endpoints are zero and there are
no discontinuities, but there is a discontinuous slope:f(x) = 1

2 − |x − 1
2 |, which

looks like a triangle when plotted. Again, this function is even around the mid-point
x = 1/2, so only the odd-n coefficients will be non-zero. For these coefficients (since
the integrand is symmetric aroundx = 1/2), we only need to do the integral over half
the region:

bm odd = 2
∫ 1

0

f(x) sin(mπx) dx = 4
∫ 1/2

0

x sin(mπx) dx =
4

(mπ)2
(−1)

m−1
2 ,

where for the last step one must do some tedious integration by parts, and thus

f(x) =
4
π2

sin(πx) − 4
(3π)2

sin(3πx) +
4

(5π)2
sin(5πx) + · · · .

This is plotted in figure. 2 for 1 to 8 terms—it converges faster than forf(x) = 1
because there are no discontinuities in the function to match, only discontinuities in
the derivative.
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Figure 2: Fourier sine series (blue lines) for the triangle functionf(x) = 1
2 − |x − 1

2 |
(dashed black lines), truncated to a finite number of terms (from 1 to 32), showing that
the series indeed converges everywhere tof(x).
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