
18.06 Problem Set 8 - Solutions
Due Wednesday, 14 November 2007 at 4 pm in 2-106.

Problem 1: (20=5+5+5+5) Consider the matrix A =

(
0.8 0.3
0.2 0.7

)
.

(a) Check that A is a positive Markov matrix, and find its steady state.

Solution A is obviously positive Markov matrix, since all entries are positive, and each
column sum is 1.

Suppose

(
x
y

)
is a corresponding eigenvector, then

(
0.8 0.3
0.2 0.7

)(
x
y

)
=

(
x
y

)
,

which implies

(
x
y

)
=

(
3
2

)
. Thus the steady state is

(
0.6
0.4

)
.

(b) Factor A into SΛS−1.

Solution Since tr(A) = 1.5 and λ1 = 1, we see λ2 = 0.5. The corresponding eigenvector

v2 satisfies

(
0.3 0.3
0.2 0.2

)
v2 = 0, i.e. v2 =

(
−1
1

)
. So the eigenvector matrix is S =(

0.6 −1
0.4 1

)
, whose inverse is S−1 =

(
1 1

−0.4 0.6

)
. So

A =

(
0.6 −1
0.4 1

)(
1 0
0 0.5

)(
1 1

−0.4 0.6

)
.

(Remark: since we can take multiples of the above vectors as eigenvectors, the de-
composition above is not unique.)

(c) Explain why Ak approaches A∞ =

(
0.6 0.6
0.4 0.4

)
in two ways, using results in (a) and

(b) respectively.

Solution

Method 1: we have
A∞ = A∞A =

(
A∞u0 A∞v0

)
,
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where u0 and v0 are two columns of A. From part (a) we see that A∞u0 is some multiple

of

(
0.6
0.4

)
. Since the sum of entries is conserved, we see A∞u0 =

(
0.6
0.4

)
. By the same

reason, A∞v0 =

(
0.6
0.4

)
. This implies the conclusion.

Method 2: From part (b) we get

A∞ =

(
0.6 −1
0.4 1

)(
1 0
0 0.5

)∞(
1 1

−0.4 0.6

)
=

(
0.6 −1
0.4 1

)(
1 0
0 0

)(
1 1

−0.4 0.6

)
=

(
0.6 0.6
0.4 0.4

)

(d) Find all Markov matrices with steady state (0.6, 0.4)T .

Solution Such Markov matrix has to be a 2× 2 matrix. Let A =

(
a b

1− a 1− b

)
. Since(

0.6
0.4

)
is the steady state, we have

(
a b

1− a 1− b

)(
0.6
0.4

)
=

(
0.6
0.4

)
. This is equivalent to

the relation 3a + 2b = 3, i.e. b = 3(1− a)/2.

Moreover, since the entries of A are nonnegative, a and b should satisfies 0 ≤ a ≤ 1
and 0 ≤ b ≤ 1. Notice that the condition b ≤ 1 together with 3a+2b = 3 implies a ≥ 1/3.

We conclude that all possible Markov matrices are

A =

(
a 3(1− a)/2

1− a (3a− 1)/2

)
with 1/3 ≤ a ≤ 1.

(However, we may study the two possible cases in more detail. First case a = 1/3 and

b = 1, then A =

(
1/3 1
2/3 0

)
. By the trace-trick, the second eigenvalue is −2/3, so

(
0.6
0.4

)
is the only steady state. The second case a = 1 and b = 0, then A is the identity matrix,

and thus the vector

(
0.6
0.4

)
is not the only steady state – vectors in other direction will

not tends to this vector.)
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Problem 2: (10) Suppose A is a Markov matrix, and let y = Ax for some vector x.
Show that the sum of the components of y equals the sum of the components of x — e.g.
if the components of x are populations, then A conserves the total population. (Hint:
recall the proof from class that the product of two Markov matrices is a Markov matrix.)

Solution For any vector x, the sum of the components of x equals

x1 + · · ·+ xn =
(
1 · · · 1

)x1
...

xn

 =
(
1 · · · 1

)
x.

Since A is Markov, we have (
1 · · · 1

)
A =

(
1 · · · 1

)
.

Thus the sum of components

y1 + · · ·+ yn =
(
1 · · · 1

)
y

=
(
1 · · · 1

)
Ax

=
(
1 · · · 1

)
x

= x1 + · · ·+ xn.

This completes the proof.

(Alternately, we can derive this using the explicit summations: If y = Ax, then
yi =

∑
j Aijxj. Therefore,

∑
i yi =

∑
i

∑
j Aijxj =

∑
j(
∑

i Aij)xj =
∑

j xj, where we
have used the fact that

∑
i Aij = 1 (the sum of each column of A is 1).)

Problem 3: (10=4+4+2) In class we learned that any positive Markov matrix A has
a dominant eigenvalue, λ (=1), in the sense that it is simple eigenvalue (not a repeated
root) and larger than the absolute value of any other eigenvalues. As a consequence, we
know that any vector x will approach a multiple of the corresponding eigenvector v1 when
we apply A to x again and again. In fact, this property holds for general matrix with
positive entries, no matter whether is Markov or not.

(a) Use MATLAB to construct a random 5 × 5 positive matrix (A = rand(5,5) will
give you a positive matrix), and use [S,D]=eig(A) to find its eigenvalues diag(D) and
corresponding eigenvectors (columns of S). What is the dominant eigenvalue? Do the
same procedure three times more, with 6× 6, 7× 7, and 8× 8 random positive matrices
respectively.

Solution The codes are
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A=rand(5,5);[S,D]=eig(A)

S =

0.5755 0.3457 - 0.2719i 0.3457 + 0.2719i -0.4957 0.4757

0.5121 -0.3048 + 0.0845i -0.3048 - 0.0845i -0.0453 -0.0138

0.3288 0.1307 - 0.1722i 0.1307 + 0.1722i -0.1410 -0.1041

0.4415 0.6317 0.6317 -0.3699 0.5518

0.3218 -0.4331 + 0.2706i -0.4331 - 0.2706i 0.7717 -0.6769

D =

2.3041 0 0 0 0

0 0.2403 + 0.1937i 0 0 0

0 0 0.2403 - 0.1937i 0 0

0 0 0 -0.0617 0

0 0 0 0 0.1118

A=rand(6,6);[S,D]=eig(A)

S =

0.4547 0.0769 -0.2412 - 0.2755i -0.2412 + 0.2755i -0.3190 -0.1879

0.4628 -0.3439 -0.0085 + 0.3875i -0.0085 - 0.3875i 0.0527 -0.3743

0.4954 -0.0246 -0.2876 + 0.0544i -0.2876 - 0.0544i 0.5464 0.4606

0.2991 -0.5746 0.2079 - 0.4206i 0.2079 + 0.4206i -0.5158 -0.1764

0.3583 0.7239 0.4969 0.4969 -0.2297 -0.2782

0.3403 -0.1453 -0.3392 + 0.2188i -0.3392 - 0.2188i 0.5273 0.7098

D =

3.2675 0 0 0 0 0

0 -0.7348 0 0 0 0

0 0 -0.0009 + 0.3287i 0 0 0

0 0 0 -0.0009 - 0.3287i 0 0

0 0 0 0 0.1725 0
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0 0 0 0 0 0.5764

A=rand(7,7);[S,D]=eig(A)

S =

-0.4451 -0.3344 + 0.0239i -0.3344 - 0.0239i -0.6160 0.0878 + 0.0769i 0.0878 - 0.0769i 0.1498

-0.3524 -0.0673 - 0.1015i -0.0673 + 0.1015i 0.0740 0.0364 + 0.0131i 0.0364 - 0.0131i 0.1080

-0.5108 0.1873 - 0.0095i 0.1873 + 0.0095i 0.2407 -0.3057 + 0.0321i -0.3057 - 0.0321i -0.4254

-0.2858 0.7892 0.7892 -0.3947 0.2644 - 0.0712i 0.2644 + 0.0712i 0.1333

-0.3892 -0.0890 + 0.0509i -0.0890 - 0.0509i 0.5000 0.2878 + 0.0817i 0.2878 - 0.0817i 0.4925

-0.2648 -0.3517 + 0.0398i -0.3517 - 0.0398i 0.2664 0.1875 - 0.1188i 0.1875 + 0.1188i -0.0632

-0.3370 -0.2809 - 0.0009i -0.2809 + 0.0009i 0.2834 -0.8226 -0.8226 -0.7215

D =

3.3641 0 0 0 0 0 0

0 -0.7064 + 0.0703i 0 0 0 0 0

0 0 -0.7064 - 0.0703i 0 0 0 0

0 0 0 0.0501 0 0 0

0 0 0 0 0.4928 + 0.1129i 0 0

0 0 0 0 0 0.4928 - 0.1129i 0

0 0 0 0 0 0 0.6919

A=rand(8,8);[S,D]=eig(A)

S =

-0.3534 0.5837 0.0787 - 0.2610i 0.0787 + 0.2610i 0.3609 0.0912 0.2868 -0.1643

-0.3662 0.1682 -0.0200 + 0.1409i -0.0200 - 0.1409i -0.4086 -0.3904 -0.4819 0.3523

-0.3146 0.3837 -0.4216 + 0.1647i -0.4216 - 0.1647i -0.3610 0.3770 0.1151 0.1774

-0.3627 0.0875 0.1859 + 0.3200i 0.1859 - 0.3200i 0.3539 -0.0284 -0.1625 0.3167

-0.4438 -0.0533 0.1738 + 0.0969i 0.1738 - 0.0969i 0.1886 0.1441 0.5046 -0.5870

-0.3570 -0.3712 0.5113 0.5113 -0.5415 0.7096 0.5003 -0.5754

-0.2792 -0.2615 -0.3619 - 0.0767i -0.3619 + 0.0767i 0.3389 -0.2537 -0.3141 0.1517

-0.3288 -0.5168 0.0320 - 0.3531i 0.0320 + 0.3531i -0.0601 -0.3280 -0.2055 0.1361
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D =

3.9113 0 0 0 0 0 0 0

0 -0.8971 0 0 0 0 0 0

0 0 0.1782 + 0.7242 0 0 0 0 0

0 0 0 0.1782 - 0.7242i 0 0 0 0

0 0 0 0 0.7315 0 0 0

0 0 0 0 0 0.3784 0 0

0 0 0 0 0 0 -0.0402 0

0 0 0 0 0 0 0 -0.1832

The dominant eigenvalues are the first eigenvalues, 2.3041, 3.2675, 3.3641 and 3.9113.
The first columns of S’es are the dominant eigenvectors.

(b) You should notice that the dominant eigenvector has components that are all of the
same sign (and hence they could all be chosen positive). (This generalizes the property,
from class, that the dominant eigenvector of a Markov matrix has components that can be
chosen nonnegative.) Prove that this is true in general. (Hint: the dominant eigenvector,
when multiplied by A, should grow faster than any other vector. Show that if the dominant
eigenvector had two components with different signs, that you could construct a different
vector that grows faster when multiplied by A.)

Solution WARN: The hint is wrong! Because the eigenvectors are not necessarily
orthogonal, it turns out that the dominant eigenvector does NOT necessarily grow faster
than any other vector, or more explicitly the dominant eigenvector does not maximize
|Ax|2/|x|2 (rather, this is maximized by the dominant eigenvector of AT A as a consequence
of the minimax principle, which we haven’t covered yet. –Thanks Ben.

(To grader: proofs based on the incorrect hint will be accepted.)

Correct proof: Suppose that the dominant eigenvector has differently signed compo-
nents. Now take a random positive vector and multiply it by An for large n. Eventually,
the vector must tend to a multiple of the dominant eigenvector, which means that it must
eventually have components of different signs. But this is impossible because the vector
started out positive and we multiplied it by a positive matrix A—there is no way to ever
get a negative number. Thus the dominant eigenvector cannot have differently signed
components. (This glosses over one point—how do you know that you can construct a
positive vector with a component of the dominant eigenvector? If it were not possible,
then the span of all the n−1 other eigenvectors must include all positive vectors. But this
is impossible since the set of all positive vectors [which includes n independent vectors,
e.g. the columns of I] is not contained in an n− 1 dimensional subspace.)
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(c) Is there any consistent pattern in the signs of the entries of all other eigenvectors?

Solution The other eigenvectors may be real vector or complex vector. However, even if
the eigenvector is real, the components must have different signs. In other words, for a
positive matrix, the dominant eigenvector is the only eigenvector which have all entries
the same sign!

Problem 4: (20=4+4+3+3+3+3) The purpose of this problem is to re-examine some
of the things we did earlier in the course, and to see what changes when we allow the
possibility of complex vectors x and matrices A and the adjoint AH . Justify your answers.

(a) For a complex A, is the left nullspace N(AT ) orthogonal to C(A) under the old
unconjugated inner product xTy or the new conjugated inner product xHy? What about
N(AH) and C(A)?

Solution The left nullspace N(AT ) is orthogonal to C(A) under the old unconjugated
inner product. In fact, if u ∈ N(AT ) and Av ∈ C(A), then

(Av)Tu = vT (ATu) = 0.

However, if we use the new conjugated inner product, then the left nullspace N(AT ) is not

orthogonal to C(A) in general. For example, take A =

(
1 1
i i

)
, then u =

(
1
i

)
∈ C(A)

and we also have u ∈ N(AT ), but uHu = 2 6= 0.

On the other hand, the left nullspace N(AH) is orthogonal to C(A) under the new
conjugated inner product: In fact, if u ∈ N(AH) and Av ∈ C(A), then

(Av)Hu = vH(AHu) = 0.

Similarly we know that in general N(AH) is not orthogonal to C(A) under the old un-
conjugated inner product.

(b) For a real vector subspace, V , the intersection of V and V ⊥ is only the single point 0.
Now suppose V is a complex vector subspace. If we define V ⊥ as the set of vectors x with
xTv = 0 for all v ∈ V , give an example of a V that intersects V ⊥ at a non-zero vector
(hint: the simplest example is probably a 1-dimensional subspace of C2). What about
if we use xHv = 0, does V ever intersect V ⊥ at a nonzero vector using the conjugated
definition of orthogonality? (Mathematicians use the latter definition of V ⊥.)
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Solution An example: Let V be the 1 dimensional complex vector subspace of C2 given
by the span of the vector (1, i). Then since (1, i)T (1, i) = 0, we see that V ⊥ = V , thus
V ∩ V ⊥ = V !

If we use xHv = 0 to define the orthogonal complement V ⊥, then V ∩ V ⊥ = {0}. In
fact, suppose V ∩ V ⊥ contains some nonzero vector x, then x is perpendicular to itself
under this conjugated definition of orthogonality, i.e. xHx = 0. But xHx = ‖x‖2. So x
has to be the zero vector.

(c) Using your answer to (b), find an example of an m×n complex matrix A (for any m and
n you like) such that C(A)+N(AT ) 6= Cm, unlike for real matrices where C(A)+N(AT ) =
Rm always (because the two subspaces only intersected at 0).

Solution Take A =

(
1
i

)
, then C(A) = N(AT ) is the complex vector subspace V spanned

by the vector

(
1
i

)
. Thus C(A) + N(AT ) = V 6= C2.

(d) Based on (a), (b), and (c), what would you suggest that we use as the four fundamental
subspaces for complex matrices?

Solution We should use the column space C(A), the nullspace N(A), and their orthogonal
complements N(AH) and C(AH).

(e) We know A and AT have equal rank. What about A and Ā? A and AH?

Solution A and Ā also have equal rank. In fact, if λ is an eigenvalue of A with eigenvector
v, i.e. Av = λv, then by taking conjugate we get Āv̄ = λ̄v̄. In other words, λ̄ is an
eigenvalue of Ā. This implies that the number of nonzero eigenvalues of A equals the
number of nonzero eigenvalues of Ā. So they have the same rank.

Since rank(A) = rank(Ā) and rank(Ā) = rank(ĀT ), we see rank(A) = rank(AH).

Alternately: if U = EA is the result of elimination on A to get rank(A) pivots, the
we can complex-conjugate everything to get Ū = ĒĀ — that is, the elimination steps are
simply conjugated, and we get the same number of pivots.

(f) How is det A related to det AH?

Solution We have proved above that the eigenvalues of Ā are exactly the conjugate of
the eigenvalues of A. Thus det Ā = det A. So det AH = det(AH)T = det(Ā) = det A.

Alternately, we could also use the explicit formula (the BIG formula) for the determi-
nant, from which it is obvious that conjugating the matrix conjugates the determinant.
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Problem 5: (10=2+2+3+3) Justify the following true statements:

(a) If A is unitary, then A is invertible and A−1 is unitary.

Solution If A is unitary, then AAH = I, thus A is invertible with A−1 = AH .

Moreover, since A−1(A−1)H = AH(AH)H = AHA = I, A−1 is unitary.

(b) If A and B are unitary, then their product AB is unitary.

Solution We have AAH = BBH = I. Thus

(AB)(AB)H = A(BBH)AH = AIAH = AAH = I.

(c) If A is Hermitian and A is invertible, then A−1 is also Hermitian.

Solution Since AA−1 = I, taking conjugate we get ĀA−1 = I. Taking transpose, we get
(A−1)HAH = I. But AH = A, so (A−1)HA = I, i.e. (A−1)H = A−1. This shows A−1 is
Hermitian.

(Another proof: we have seen from pset 7 that according to Cayley-Hamilton theorem,
A−1 is a polynomial of A, thus if A is Hermitian, A−1 is automatically Hermitian.)

(d) If A is diagonalizable, then eA is diagonalizable.

Solution A is diagonalizable if and only it has n linearly independent eigenvectors
v1, · · · ,vn. Denote the corresponding eigenvalues by λi. Then we have

eAvi = (I + A +
1

2!
A2 + · · · )vi = (1 + λi +

1

2!
λ2

i + · · · )vi = eλivi,

which implies that vi is an eigenvector of eA corresponding to eigenvalue λi. So eA has n
linearly independent eigenvectors and thus diagonalizable.

Problem 6: (10=3+4+3) Suppose A is anti-Hermitian, i.e., AH = −A. (This is also
called “skew-Hermitian.”) Note that a special case of this is a real anti-symmetric matrix,
i.e. AT = −A for real A.)

(a) Show that iA is Hermitian. Conclude that the eigenvalues of A purely imaginary.

Solution Since AH = −A, we have

(iA)H = īAH = −i(−A) = iA.
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So the matrix iA is Hermitian. Since the eigenvalues of the Hermitian matrix iA are real,
the eigenvalues of the matrix A are purely imaginary numbers (and 0).

(b) Show that eA is a unitary matrix.

Solution Since (Ak)H = (AH)k for all k, we have

(eA)H = e(AH) = e−A.

Since A and −A commutes, we get

(eA)HeA = e−AeA = e−A+A = e0I = I.

Thus eA is unitary.

(c) Show that the solution u(t) of the system du
dt

= Au satisfies ‖u(t)‖2 = ‖u(0)‖2.

Solution The solution to the system above is u(t) = eAtu(0). Thus

‖u(t)‖2 = ‖eAtu(0)‖2 = u(0)H(eAt)HeAtu(0) = u(0)Hu(0) = ‖u(0)‖2.

Problem 7: (10) Unlike the exponential function on numbers, the matrix eAeB is
in general different from eBeA, and both can be different from eA+B. Check the above

statement for A =

(
1 1
1 −1

)
and B =

(
0 −1
1 0

)
.

Solution The characteristic equation of A is λ2 − 2 = 0, so λ1 =
√

2, λ2 = −
√

2.

For λ1 =
√

2, we have v1 =

(
1√

2− 1

)
. For λ2 = −

√
2, we have v2 =

(
1−

√
2

1

)
. So

the matrix of eigenvectors is S =

(
1 1−

√
2√

2− 1 1

)
. So

eA =

(
1 1−

√
2√

2− 1 1

)(
e
√

2 0

0 e−
√

2

)(
1 1−

√
2√

2− 1 1

)−1

=
1

4− 2
√

2

(
e
√

2 + (
√

2− 1)2e−
√

2 (
√

2− 1)(e
√

2 − e−
√

2)

(
√

2− 1)(e
√

2 − e−
√

2) (
√

2− 1)2e
√

2 + e−
√

2

)

Similarly the matrix B has characteristic equation λ2 + 1 = 0, i.e., λ1 = i, λ2 = −i.
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For λ1 = i, we have v1 =

(
1
−i

)
. For λ2 = −i, we have v2 =

(
1
i

)
. So the matrix of

eigenvectors is S =

(
1 1
−i i

)
. So

eB =

(
1 1
−i i

)(
ei 0
0 e−i

)(
1 1
−i i

)−1

=

(
cos 1 − sin 1
sin 1 cos 1

)

Finally A + B =

(
1 0
2 −1

)
, so λ1 = 1, λ2 = −1, v1 =

(
1
1

)
and v2 =

(
0
1

)
. So

eA+B =

(
1 0
1 −1

)(
e 0
0 e−1

)(
1 0
1 −1

)T

=

(
e 0

e− e−1 e−1

)
.

The fact that eAeB, eBeA and eA+B are all different follows from direct computation.

Problem 8: (10) Solve the ODE system du
dt

=

(
0 1
−1 0

)
u for u|t=0 =

(
1
0

)
.

Solution From solution of problem 7 above we have seen that for A =

(
0 1
−1 0

)
,

e−A =

(
cos 1 − sin 1
sin 1 cos 1

)
.

By the same argument, one can easily see that

e−At =

(
cos t − sin t
sin t cos t

)
.

Thus

eAt =

(
cos t sin t
− sin t cos t

)
.

So

u(t) = eAt

(
1
0

)
=

(
cos t
− sin t

)
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